
OpenBR Stream Framework

Outline

• Transforms
– Interface overview
– Support for non-const transforms

• projectUpdate, smartCopy, finalize

• Parallelization of non-const transforms
– Design goals

• Challenges, solutions

– Class overview
– Use cases

• Transform based comparison

– Limitations
– Future Plans

Transforms

• Transforms represent operations performed on templates
– Templates have N cv::Mat matrices and arbitrary key/value metadata

• void project(const Template & src, Template & dst)
const;
– Basic feature extraction/dimensionality reduction/etc. are well represented

• Is this sufficient?
– Exactly one output template per input template

• 1 to N transforms?
– Detection – output multiple transforms per input image

• 1 to 0 transforms?
– Frame selection – drop frames according to some criterion

– const implies the Transform cannot update its own state in
project
• implies it is safe to call project in parallel, on the same instance of the

transform

Non-const Operations

• Cases where:
– 1. Concurrent project calls are unsafe
– 2. Output depends on previous inputs (time-variance), or data must be

processed in a fixed order

• Image display
– Displaying multiple images in a single window

• Concurrent display calls are unadvisable

• File I/O
– Writing sequentially to a file/reading sequentially from a file

• Tracking
– Consolidating multiple detections of the same person

• Online learning algorithms
– Online classifiers

• Report a classification result, and update model

– Online clustering algorithms
• May give incremental clustering based on data seen so far
• May assign identity (or ClusterID) to new images, and update model

Non-const project

• projectUpdate(const TemplateList & src, TemplateList
& dst);
– Perform an operation on inputs, optionally update internal state
– Must be called sequentially over templates in a dataset
– Cannot be called in parallel on the same object

• Can be called in parallel on separate instances of the Transform

• Transform
– project(TemplateList, TemplateList) const;
– projectUpdate(TemplateList, TemplateList);

• Which project should be called?
• bool Transform::timeVarying();

– True = projectUpdate should be called, sequentially over the data
– False = project should be called, can be called in parallel

• TimeVarying transforms represent:
– Operations that must be done sequentially on the dataset
– Operations that update their internal state during projection

Const Interface

• Desirable to have a const method as the user-
facing interface
– safe to call, regardless of user’s multi-threading

scheme

• Unsafe to call projectUpdate concurrently on the
same object
– Safe to call projectUpdate concurrently on different

objects

• Default project for timeVarying transforms:
– Copy this object, call projectUpdate on one internal

copy

class TimeInvariantWrapperTransform : public MetaTransform
{
public:
 Resource<Transform> transformSource;

 void project(const TemplateList &src, TemplateList &dst) const
 {
 Transform * aTransform = transformSource.acquire();
 aTransform->projectUpdate(src,dst);
 transformSource.release(aTransform);
 }
};

class BR_EXPORT TimeVaryingTransform : public Transform
{

 virtual void project(const Template &src, Template &dst) const
 {

 timeInvariantAlias.project(src,dst);
 }

protected:
 // Since copies aren't actually made until project is called, we can set up
 // timeInvariantAlias in the constructor.

 TimeInvariantWrapperTransform timeInvariantAlias;

 TimeVaryingTransform(bool independent = true, bool trainable = true)

 : Transform(independent, trainable), timeInvariantAlias(this) {}
};

smartCopy

• We don’t need to copy transforms that are not
time-varying

• Transform * smartCopy()
– Recursive operation, do the minimal amount of

work needed to get a functional copy
• Non time-varying, return this

• Time varying, untrainable, return a copy from this
transforms string description

• Time varying, trainable, make a copy, initialize trained
data in the copy

Composite Transforms

• Pipe(A, B, C)
– Pipe::project

• Calls project on child transforms

– Pipe::projectUpdate
• Calls projectUpdate on child transforms

• B is timeVarying
– Therefore, the Pipe is also timeVarying (because it

cannot safely call project on its children)

• Pipe::smartCopy – make a copy iff the pipe is
timeVarying

Propagation

Pipe

Time varying transforms

Open+Cvt(Gray)+Cascade(FrontalFace)+Display

Open Cvt(Gray) Cascade(FrontalFace) Display

Pipe

Consistent Sets

• Consider Pipe(A,B,C)

– A, C are time varying e.g. A is a tracker, C is a
display

• The video being displayed on an instance of C
should always be associated with the same
instance of A

Finalize

• projectUpdate
– do something, and make incremental updates

– Output can be deferred (e.g. only output every Nth frame)

• Need to know when the incremental process is over
– E.g. at the end of a video, no more templates are coming

– Emit any remaining output

– Reset internal state

• void finalize(TemplateList & output);

Parallelism

• Ideally, we would project Templates in parallel

• Not possible for time-varying transforms

– Have to run these sequentially over the data

• Still possible to pipeline time-varying
transforms

– Process Template 2 in Transform B while
processing Template 1 in Transform A

Open Display

image1 image2

Mixed-mode parallelism

• Some transforms operate concurrently over frames, some can only be
pipelined

• Ideally we will run the time varying transforms in a pipeline, and also run
the other transforms in parallel over multiple transforms

Open

Display

image6

image4

Open

image7

Open

image8

Aggregate
Frames

image3

LBP

image1

LBP

LBP

image2

image3

Basic Pipeline

• Divide an algorithm into stages, say one
transform per stage

• Each stage is operated by 1 (or more) threads

• Each stage has an input buffer, threads:

– Take template from input buffer

– Project template

– Place result on next stage input buffer

• Problems?

Problem 1: Queue Divergence

• Given a pipeline, one stage will be slower than
the others

• Over time, the preceding stage will place more
and more items on the slower stages input
queue

• What will happen?

Basic Approach

• The preceding stage waits for the following stage
to clear its input queue

• Preceding stage:
– When adding an item, check a threshold on queue

length (can use hysteresis)
– If above threshold, wait until queue length falls below

threshold

• This is basically fine
– Total number of frames being processed => memory

use is controlled a little indirectly
– Threads blocked waiting for the queue to clear might

be better used elsewhere

Alternate Approach

• Threshold the total number of frames being
processed by the entire pipeline

• Check threshold only at the initial data source

• The last stage returns frames to the initial data
source

• Per-stage queue thresholds are not set,
number of frames being processed (therefore
memory use) is strictly limited

Problem 2: Thread Distribution

• How many threads should be assigned to each
stage given an N core CPU?

– Options:

• Assign N threads to each multi-threaded stage
– Balancing via contention – all stages try to do as much as

possible. Can be inefficient

• Assign some lesser (fixed) number of threads to each
stage
– May not reach full utilization

• Dynamically select the number of threads per stage
– How?

Alternate Threading Strategy

• Don’t assign threads to fixed stages
• Instead, all threads carry out the following loop:

– Process the current template in the current stage
– If there is a Template on the current stage’s input buffer, start a thread

at this stage to process the template
– Try to acquire access to the next stage
– If unable to do so, put the current template on the next stage’s buffer

and end
– Otherwise, continue the loop at the next stage

• Threads loop over stages, rather than Templates received at the
same stage
– This guarantees progression (running Templates through the complete

pipeline is emphasized over running all templates through one stage at
a time)

• Downsides:
– Variable, often short thread lifespan

• Thanks to thread pools, this is not a deal breaker

Core Processing Loop

void BasicLoop::run()

{

 int current_idx = start_idx;

 FrameData * target_item = startItem;

 bool should_continue = true;

 bool the_end = false;

 forever

 {

 target_item = stages->at(current_idx)->run(target_item, should_continue, the_end);

 if (!should_continue) {

 break;

 }

 current_idx++;

 current_idx = current_idx % stages->size();

 }

 if (the_end) {

 dynamic_cast<ReadStage *> (stages->at(0))->dataSource.wake();

 }

 this->reportFinished();

}

ReadStage
 -FrameDataBuffer
 -DataSource

Single-thread Stage
 -Input buffer
 -timeVarying Transform

Multi-thread Stage
 -non timeVarying Transform

Single-thread Stage
 -Input buffer
 -output collecting transform

Stream Data Structures

class FrameData
{
public:
 int sequenceNumber;
 TemplateList data;
};

• FrameData – actual structure passed between processing stages
• Buffers

– Every single threaded stage has an input buffer
– If the preceding stage is multi-threaded, the buffer puts the frames back in order

• Base class:
class SharedBuffer
{
public:
 SharedBuffer() {}
 virtual ~SharedBuffer() {}

 virtual void addItem(FrameData * input)=0;
 virtual void reset()=0;

 virtual FrameData * tryGetItem()=0;
 virtual int size()=0;
};

Buffer Classes

• class SequencingBuffer : public
SharedBuffer

– For multi-thread to single thread boundaries

– QMap<int, FrameData *> buffer;

– Buffer consists of a map keyed on the frame number

• class DoubleBuffer : public
SharedBuffer

– For single thread to single thread boundaries

• FIFO buffer with unnecessary double buffering scheme

Processing Stages

class ProcessingStage
{
public:
 virtual FrameData* run(FrameData * input, bool & should_continue, bool &
final)=0;

 virtual bool tryAcquireNextStage(FrameData *& input, bool & final)=0;

 virtual void reset()=0;

 virtual void status()=0;

protected:
 SharedBuffer * inputBuffer;
 ProcessingStage * nextStage;
 Transform * transform;
};

• Classes representing one single or multi-threaded stage in a
pipeline

Multi-threaded

class MultiThreadStage : public ProcessingStage
{
public:
 // Not much to worry about here, we will project the input
 // and try to continue to the next stage.
 FrameData * run(FrameData * input, bool & should_continue, bool & final)
 {
 if (input == NULL) {
 qFatal("null input to multi-thread stage");
 }
 input->data >> *transform;
 should_continue = nextStage->tryAcquireNextStage(input, final);
 return input;
 }

 // Called from a different thread than run. Nothing to worry about
 // we offer no restrictions on when loops may enter this stage.
 virtual bool tryAcquireNextStage(FrameData *& input, bool & final)
 {
 (void) input;
 final = false;
 return true;
 }
};

• Multi-thread stages call project on input transforms, and offer
no restrictions on access to the stage

Single Threaded
 FrameData * run(FrameData * input, bool & should_continue,
bool & final)

 {

 // Project the input we got

 transform->projectUpdate(input->data);

 should_continue = nextStage-
>tryAcquireNextStage(input,final);

 if (final)

 return input;

 // Is there anything on our input buffer? If so we
should start a thread with that.

 QWriteLocker lock(&statusLock);

 FrameData * newItem = inputBuffer->tryGetItem();

 if (!newItem) this->currentStatus = STOPPING;

 lock.unlock();

 if (newItem)

 startThread(newItem);

 return input;

 }

 bool tryAcquireNextStage(FrameData *& input,
 bool & final)
 {
 final = false;
 inputBuffer->addItem(input);

 QReadLocker lock(&statusLock);
 // Thread is already running, we should just
return
 if (currentStatus == STARTING) return false;

 // Have to change to a write lock to modify
currentStatus
 lock.unlock();

 QWriteLocker writeLock(&statusLock);
 // But someone else might have started a thread in
the meantime
 if (currentStatus == STARTING) return false;

 input = inputBuffer->tryGetItem();

 if (!input) return false;

 currentStatus = STARTING;

 return true;
 }

Read Stage
• Special case, acquires Templates from a data

source
 FrameData * run(FrameData * input, bool &
should_continue, bool & final)

 {

 if (input == NULL)

 qFatal("NULL frame in input stage");

 // Can we enter the next stage?

 should_continue = nextStage-
>tryAcquireNextStage(input, final);

 // Try to get a frame from the datasource, we keep
working on

 // the frame we have, but we will queue another
job for the next

 // frame if a frame is currently available.

 QWriteLocker lock(&statusLock);

 bool last_frame = false;

 FrameData * newFrame =
dataSource.tryGetFrame(last_frame);

 // Were we able to get a frame?

 if (newFrame) startThread(newFrame);

 // If not this stage will enter a stopped state.

 else currentStatus = STOPPING;

 lock.unlock();

 return input;

 }

 // The last stage, trying to access the first stage
 bool tryAcquireNextStage(FrameData *& input, bool &
final)
 {
 // Return the frame, was it the last one?
 final = dataSource.returnFrame(input);
 input = NULL;

 // OK we won't continue.
 if (final) return false;

 QReadLocker lock(&statusLock);
 // If the first stage is already active we will just
end.
 if (currentStatus == STARTING) return false;

 lock.unlock();
 QWriteLocker writeLock(&statusLock);
 // currentStatus might have changed in the gap
between releasing the read
 // lock and getting the write lock.
 if (currentStatus == STARTING) return false;

 bool last_frame = false;
 // Try to get a frame from the data source, if we get
one we will
 // continue to the first stage.
 input = dataSource.tryGetFrame(last_frame);

 if (!input) return false;
 currentStatus = STARTING;
 return true;
 }

DataSource

• Interface for reading data sequentially from one
of several possible data sources

• Given a template list as input, returns individual
template sequentially

• Main interface:
 bool open(const TemplateList & input, br::Idiocy::StreamModes _mode);

FrameData * tryGetFrame(bool & last_frame);

 bool returnFrame(FrameData * inputFrame);

• tryGetFrame will work until the data source
breaks, or the DataSource is out of frames

TemplateProcessor

• Class hierarchy used by DataSource to get N templates as output
sequentially for a given template input. Used to e.g. incrementally read
frames from a video.

class TemplateProcessor
{
public:
 virtual bool open(Template & input)=0;
 virtual bool isOpen()=0;
 virtual void close()=0;
 virtual bool getNextTemplate(Template & output)=0;
}
• Class hierarchy used by DataSource to get N templates as output

sequentially for a given template input. Subclasses include:
– VideoReader – incrementally reads videos using cv::VideoCapture
– StreamGallery – incrementally reads templates from Gallery specifications
– SeqReader – reads some video format

Transforms

• DirectStreamTransform
– Has a set of child Transforms, constructs and links

ProcessingStages for each child transform (as well as a
ReadStage),

– Parameters:
• activeFrames – number of frames available to the datasource
• readMode – type of TemplateProcessor used on TemplateLists

supplied to DirectStreamTransform::project

– Templates input to project are split into single item template
lists, then projected

• StreamTransform
– Simplified interface to DirectStreamTransform
– Has single child transform
– Restructures child transform if it’s a Pipe

• Adjacent non-timeVarying transforms == single stage
• Adjacent timeVarying transforms == separate stages

Stream

CompositeTransform

SharedBuffer

DoubleBuffer SequencingBuffer

ProcessingStage

MultiThreadStage SingleThreadStage

Transform

ReadStage

DataSource

FrameData TemplateList

DirectStream

TemplateProcessor

VideoReader

StreamGallery

Use Cases

• Video Processing
– Incrementally read a video, and process frames

– Proper support for e.g. tracking functions

• Enrollment
– Incrementally read a gallery, and process templates

loaded from that gallery

• Comparison
– Create a transform which compares incoming

templates against a gallery, incrementally read the
probe set, and compare against the gallery one item
at a time

Distance

• Interfaces:

– Compare two templates, give an output score

– Compare a template against a template list

– Compare two template lists

• Treats the comparison as independent from
the things being compared

– This is not valid in all cases

• How would a hashing function be represented?

• How should cases such as PP5, where comparison
requires a costly deserialization step be handled?

Comparison as a Transform

• Comparison against a fixed gallery is naturally
modeled as a Transform

• Data:
– A Distance

– A Gallery

• Input: Feature vector

• Output: Score vector
– Comparison of the feature vector against the

gallery

Advantages of Transform Based
Comparison

• Support for inline enrollment+comparison

– Compare a probe set against a gallery, never
instantiate the entire probe set’s feature vectors

• Support for sequential comparison matrix
output

• Avoids reliance on global state

– Compared to e.g. Distance::compare+Tail Output

Stream Limitations

• The parallelization scheme improves
throughput, but not latency

• Efficiency is predicated on stopping/starting
threads being efficient
– In a shared memory space with thread pools, this

is OK

• The thread which calls Stream::project blocks
until the call completes, and can’t be used by
the Stream
– This complicates threading somewhat

Future

• Recycling frames
– For videos, frame size is typically fixed
– Possible to avoid re-allocating every frame by adding a cv::Mat

to frameData, loading the frame into that buffer, and initializing
the template with it.

• Online processing
– Reading from a live video source, currently there is no explicit

fallback if we can’t make framerate
– Can have a separate thread (in DataSource) actively reading to a

ring buffer, and just take frames from the end of the ring buffer
as needed

• Early exit
– If all Templates are discarded by a transform, immediately

return that frame.

