OpenBR Stream Framework

Outline

e Transforms
— Interface overview

— Support for non-const transforms
e projectUpdate, smartCopy, finalize
e Parallelization of non-const transforms
— Design goals
e Challenges, solutions
— Class overview

— Use cases
* Transform based comparison

— Limitations
— Future Plans

Transforms

Transforms represent operations performed on templates
— Templates have N cv::Mat matrices and arbitrary key/value metadata

void project(const Template & src, Template & dst)
const;

— Basic feature extraction/dimensionality reduction/etc. are well represented
Is this sufficient?

— Exactly one output template per input template
* 1to N transforms?
— Detection — output multiple transforms per input image
* 1to 0 transforms?

— Frame selection — drop frames according to some criterion

— const implies the Transform cannot update its own state in
project

* implies it is safe to call project in parallel, on the same instance of the
transform

Non-const Operations

Cases where:
— 1. Concurrent project calls are unsafe

— 2. Output depends on previous inputs (time-variance), or data must be
processed in a fixed order

Image display

— Displaying multiple images in a single window

* Concurrent display calls are unadvisable

File 1/O

— Writing sequentially to a file/reading sequentially from a file
Tracking

— Consolidating multiple detections of the same person
Online learning algorithms

— Online classifiers
* Report a classification result, and update model
— Online clustering algorithms

* May give incremental clustering based on data seen so far
* May assign identity (or ClusterID) to new images, and update model

Non-const project

projectUpdate(const Templatelist & src, Templatelist
& dst);

— Perform an operation on inputs, optionally update internal state

— Must be called sequentially over templates in a dataset

— Cannot be called in parallel on the same object
* Can be called in parallel on separate instances of the Transform

Transform

— project(TemplateList, TemplatelList) const;
— projectUpdate(TemplatelList, TemplatelList);
Which project should be called?

bool Transform::timeVarying();
— True = projectUpdate should be called, sequentially over the data
— False = project should be called, can be called in parallel
TimeVarying transforms represent:
— Operations that must be done sequentially on the dataset
— Operations that update their internal state during projection

Const Interface

e Desirable to have a const method as the user-
facing interface

— safe to call, regardless of user’s multi-threading
scheme

* Unsafe to call projectUpdate concurrently on the
same object

— Safe to call projectUpdate concurrently on different
objects

* Default project for timeVarying transforms:

— Copy this object, call projectUpdate on one internal
copy

class TimelnvariantWrapperTransform : public MetaTransform

{
public:

Resource<Transform> transformSource;

void project(const TemplatelList &src, TemplateList &dst) const

{

Transform * aTransform = transformSource.acquire();
aTransform->projectUpdate(src,dst);
transformSource.release(aTransform);

}
|5

class BR_EXPORT TimeVaryingTransform . public Transform

{
virtual void project(const Template &src, Template &dst) const
{

timelnvariantAlias.project(src,dst);
}

protected:

// Since copies aren't actually made until project is called, we can set up
// timeInvariantAlias in the constructor.

TimelnvariantWrapperTransform timelnvariantAlias;
TimeVaryingTransform(bool independent = true, bool trainable = true)

. Transform(independent, trainable), timelnvariantAlias(this) {}
3

smartCopy

* We don’t need to copy transforms that are not
time-varying

* Transform * smartCopy()

— Recursive operation, do the minimal amount of
work needed to get a functional copy
* Non time-varying, return this

* Time varying, untrainable, return a copy from this
transforms string description

* Time varying, trainable, make a copy, initialize trained
data in the copy

Composite Transforms

* Pipe(A, B, C)
— Pipe::project
 Calls project on child transforms
— Pipe::projectUpdate
* Calls projectUpdate on child transforms
* BistimeVarying
— Therefore, the Pipe is also timeVarying (because it
cannot safely call project on its children)
* Pipe::smartCopy — make a copy iff the pipe is
timeVarying

Propagation

Opent+Cvt (Gray) +Cascade (FrontalFace) +Display

|Cvt(Gray) |Cascade(FrontaIFace)

. Time varying transforms

Consistent Sets

* Consider Pipe(A,B,C)
— A, C are time varying e.g. A is a tracker, Cis a
display

 The video being displayed on an instance of C
should always be associated with the same
instance of A

Finalize

 projectUpdate
— do something, and make incremental updates
— Output can be deferred (e.g. only output every Nth frame)
* Need to know when the incremental process is over
— E.g. at the end of a video, no more templates are coming
— Emit any remaining output
— Reset internal state
 void finalize(TemplatelList & output);

Parallelism

* |deally, we would project Templates in parallel
* Not possible for time-varying transforms

— Have to run these sequentially over the data
* Still possible to pipeline time-varying
transforms

— Process Template 2 in Transform B while
processing Template 1 in Transform A

Open Display

imagel image2

Mixed-mode parallelism

Open LBP
image6 imagel
. Aggregate
Displ
Open Py Frames LBP
image7 imaged image2
image3
Open LBP
image8
image3

Some transforms operate concurrently over frames, some can only be
pipelined

Ideally we will run the time varying transforms in a pipeline, and also run
the other transforms in parallel over multiple transforms

Basic Pipeline

Divide an algorithm into stages, say one
transform per stage

Each stage is operated by 1 (or more) threads

Each stage has an input buffer, threads:
— Take template from input buffer

— Project template

— Place result on next stage input buffer

Problems?

Problem 1: Queue Divergence

* Given a pipeline, one stage will be slower than
the others

* Over time, the preceding stage will place more
and more items on the slower stages input
queue

 What will happen?

Basic Approach

 The preceding stage waits for the following stage
to clear its input queue

* Preceding stage:

— When adding an item, check a threshold on queue
length (can use hysteresis)

— If above threshold, wait until queue length falls below
threshold

* This is basically fine

— Total number of frames being processed => memory
use is controlled a little indirectly

— Threads blocked waiting for the queue to clear might
be better used elsewhere

Alternate Approach

Threshold the total number of frames being
processed by the entire pipeline

Check threshold only at the initial data source

The last stage returns frames to the initial data
source

Per-stage queue thresholds are not set,
number of frames being processed (therefore
memory use) is strictly limited

Problem 2: Thread Distribution

* How many threads should be assighed to each
stage given an N core CPU?
— Options:

* Assign N threads to each multi-threaded stage

— Balancing via contention — all stages try to do as much as
possible. Can be inefficient

* Assign some lesser (fixed) number of threads to each
stage
— May not reach full utilization
* Dynamically select the number of threads per stage

— How??

Alternate Threading Strategy

Don’t assign threads to fixed stages

Instead, all threads carry out the following loop:
— Process the current template in the current stage

— If there is a Template on the current stage’s input buffer, start a thread
at this stage to process the template

— Try to acquire access to the next stage

— If unable to do so, put the current template on the next stage’s buffer
and end

— Otherwise, continue the loop at the next stage
Threads loop over stages, rather than Templates received at the
same stage

— This guarantees progression (running Templates through the complete
pipeline is emphasized over running all templates through one stage at
a time)
Downsides:

— Variable, often short thread lifespan
* Thanks to thread pools, this is not a deal breaker

Core Processing Loop

void BasiclLoop::run()
{
int current_idx = start_idx;
FrameData * target_item = startItem;
bool should_continue = true;
bool the_end = false;
forever
{
target_item = stages->at(current_idx)->run(target_item, should _continue, the_end);
if (!should_continue) {
break;
}
current_idx++;
current_idx = current_idx % stages->size();
}
if (the_end) {
dynamic_cast<ReadStage *> (stages-»at(@))->dataSource.wake();

this->reportFinished();

Single-thread Stage

_Input buffer Multi-thread Stage

-non timeVarying Transform

-output collecting transform

ReadStage Single-thread Stage

-FrameDataBuffer -Input buffer
-DataSource -timeVarying Transform

Stream Data Structures

class FrameData
{
public:
int sequenceNumber;
Templatelist data;
2
FrameData — actual structure passed between processing stages
Buffers
— Every single threaded stage has an input buffer
— If the preceding stage is multi-threaded, the buffer puts the frames back in order

Base class:
class SharedBuffer
{
public:
SharedBuffer() {}
virtual ~SharedBuffer() {}

virtual void addItem(FrameData * input)=0;
virtual void reset()=0;

virtual FrameData * tryGetltem()=0;
virtual int size()=0;

Buffer Classes

 class SequencingBuffer : public
SharedBuffer

— For multi-thread to single thread boundaries
— QMap<int, FrameData *> buffer;
— Buffer consists of a map keyed on the frame number

« class DoubleBuffer : public

SharedBuffer
— For single thread to single thread boundaries

* FIFO buffer with unnecessary double buffering scheme

Processing Stages

* Classes representing one single or multi-threaded stage in a
pipeline

class ProcessingStage

{
public:

virtual FrameData* run(FrameData * input, bool & should continue, bool &
final)=0;

virtual bool tryAcquireNextStage(FrameData *& input, bool & final)=0;

virtual void reset()=0;

virtual void status()=0;

protected:
SharedBuffer * inputBuffer;
ProcessingStage * nextStage;
Transform * transform;

}s

Multi-threaded

class MultiThreadStage : public ProcessingStage

{
public:
// Not much to worry about here, we will project the input
// and try to continue to the next stage.
FrameData * run(FrameData * input, bool & should_continue, bool & final)
{
if (input == NULL) {
gFatal("null input to multi-thread stage");
}
input->data >> *transform;
should_continue = nextStage->tryAcquireNextStage(input, final);
return input;
}
// Called from a different thread than run. Nothing to worry about
// we offer no restrictions on when Loops may enter this stage.
virtual bool tryAcquireNextStage(FrameData *& input, bool & final)
{
(void) input;
final = false;
return true;
}
}s

* Multi-thread stages call project on input transforms, and offer
no restrictions on access to the stage

Single Threaded

FrameData * run(FrameData * input, bool & should_continue,
bool & final)

{
// Project the input we got
transform->projectUpdate(input->data);
should_continue = nextStage-
>tryAcquireNextStage(input,final);
if (final)
return input;

// Is there anything on our input buffer? If so we
should start a thread with that.

QWriteLocker lock(&statusLock);

FrameData * newItem = inputBuffer->tryGetItem();
if (!'newItem) this->currentStatus = STOPPING;
lock.unlock();

if (newItem)
startThread(newItem);

return input;

bool tryAcquireNextStage(FrameData *& input,
bool & final)

{
final = false;
inputBuffer->addItem(input);
QReadLocker lock(&statusLock);
// Thread is already running, we should just
return

if (currentStatus == STARTING) return false;

// Have to change to a write lock to modify
currentStatus

lock.unlock();

QWriteLocker writelLock(&statusLock);

// But someone else might have started a thread in
the meantime

if (currentStatus == STARTING) return false;

input = inputBuffer->tryGetItem();

if (!input) return false;

currentStatus = STARTING;

return true;

Read Stage

e Special case, acquires Templates from a data

source

FrameData * run(FrameData * input, bool &
should continue, bool & final)

{
if (input == NULL)
gFatal("NULL frame in input stage");

// Can we enter the next stage?

should_continue = nextStage-
>tryAcquireNextStage(input, final);

// Try to get a frame from the datasource, we keep
working on

// the frame we have, but we will queue another
job for the next

// frame 1if a frame is currently available.
QWriteLocker lock(&statuslLock);
bool last_frame = false;

FrameData * newFrame =
dataSource.tryGetFrame(last_frame);

// Were we able to get a frame?

if (newFrame) startThread(newFrame);

// If not this stage will enter a stopped state.
else currentStatus = STOPPING;

lock.unlock();

return input;

// The last stage, trying to access the first stage
bool tryAcquireNextStage(FrameData *& input, bool &

final)

{
// Return the frame, was it the Llast one?
final = dataSource.returnFrame(input);
input = NULL;

// OK we won't continue.
if (final) return false;

QReadLocker lock(&statusLock);
// If the first stage is already active we will just

end.

if (currentStatus == STARTING) return false;

lock.unlock();
QWriteLocker writelLock(&statusLock);
// currentStatus might have changed in the gap

between releasing the read

// Llock and getting the write Lock.
if (currentStatus == STARTING) return false;

bool last_frame = false;
// Try to get a frame from the data source, if we get

one we will

// continue to the first stage.
input = dataSource.tryGetFrame(last_frame);

if (linput) return false;
currentStatus = STARTING;
return true;

DataSource

Interface for reading data sequentially from one
of several possible data sources

Given a template list as input, returns individual
template sequentially

Main interface:

bool open(const TemplatelList & input, br::Idiocy::StreamModes _mode);
FrameData * tryGetFrame(bool & last frame);

bool returnFrame(FrameData * inputFrame);

tryGetFrame will work until the data source
breaks, or the DataSource is out of frames

TemplateProcessor

e Class hierarchy used by DataSource to get N templates as output

sequentially for a given template input. Used to e.g. incrementally read
frames from a video.

class TemplateProcessor

{
public:

virtual bool open(Template & input)=0;

virtual bool isOpen()=0;

virtual void close()=0;

virtual bool getNextTemplate(Template & output)=0;
}

* Class hierarchy used by DataSource to get N templates as output
sequentially for a given template input. Subclasses include:

— VideoReader — incrementally reads videos using cv::VideoCapture
— StreamGallery — incrementally reads templates from Gallery specifications
— SeqgReader — reads some video format

Transforms

e DirectStreamTransform

— Has a set of child Transforms, constructs and links
ProcessingStages for each child transform (as well as a
ReadStage),

— Parameters:
e activeFrames — number of frames available to the datasource

* readMode — type of TemplateProcessor used on TemplateLists
supplied to DirectStreamTransform::project

— Templates input to project are split into single item template
lists, then projected

e StreamTransform
— Simplified interface to DirectStreamTransform
— Has single child transform

— Restructures child transform if it’s a Pipe
* Adjacent non-timeVarying transforms == single stage
* Adjacent timeVarying transforms == separate stages

Transform

A

P
A4

‘CompositeTra nsform

FrameData

TemplateList

DirectStream

ProcessingStage

4

‘Stream
‘SharedBuffer SingleThreadStage | [MultiThreadStage
.? Y
| |
SequencingBuffer| [DoubleBuffer | |ReadStage TemplateProcessor
*
|
\VideoReader
DataSource
|StreamGaIIery

Use Cases

* Video Processing
— Incrementally read a video, and process frames
— Proper support for e.g. tracking functions

e Enrollment

— Incrementally read a gallery, and process templates
loaded from that gallery

* Comparison

— Create a transform which compares incoming
templates against a gallery, incrementally read the
probe set, and compare against the gallery one item
at a time

Distance

* |nterfaces:
— Compare two templates, give an output score
— Compare a template against a template list
— Compare two template lists

* Treats the comparison as independent from
the things being compared
— This is not valid in all cases

 How would a hashing function be represented?

* How should cases such as PP5, where comparison
requires a costly deserialization step be handled?

Comparison as a Transform

Comparison against a fixed gallery is naturally
modeled as a Transform

Data:
— A Distance
— A Gallery

Input: Feature vector

Output: Score vector

— Comparison of the feature vector against the
gallery

Advantages of Transform Based
Comparison

* Support for inline enrollment+comparison

— Compare a probe set against a gallery, never
instantiate the entire probe set’s feature vectors

e Support for sequential comparison matrix
output

* Avoids reliance on global state
— Compared to e.g. Distance::compare+Tail Output

Stream Limitations

* The parallelization scheme improves
throughput, but not latency

 Efficiency is predicated on stopping/starting
threads being efficient

— In a shared memory space with thread pools, this
Is OK

* The thread which calls Stream::project blocks
until the call completes, and can’t be used by
the Stream

— This complicates threading somewhat

Future

* Recycling frames
— For videos, frame size is typically fixed

— Possible to avoid re-allocating every frame by adding a cv::Mat
to frameData, loading the frame into that buffer, and initializing

the template with it.

* Online processing

— Reading from a live video source, currently there is no explicit
fallback if we can’t make framerate

— Can have a separate thread (in DataSource) actively reading to a
ring buffer, and just take frames from the end of the ring buffer

as heeded
e Early exit

— If all Templates are discarded by a transform, immediately
return that frame.

