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Abstract

We present a framework, called uniqueness-based non-
match estimates (UNE), which demonstrates the ability to
improve face recognition performance of any face matcher.
The first aspect of the framework is a novel metric for
measuring the uniqueness of a given individual, called the
impostor-based uniqueness measure (IUM). The UNE the
maps face match scores from any any face matcher into
non-match probability estimates that are conditionally de-
pendent on the probe image’s IUM. Using this framework
we demonstrate: (i) an improved generalization of match-
ing thresholds (and, subsequently, improved matching ac-
curacy), (ii) a score normalization technique that improves
the interoperability for users of different face matchers, and
(iii) the predictive ability of IUM towards face recognition
accuracy. Studies are conducted on an operational dataset
with 16,000 subjects using three different face matchers
(two commercial, one proprietary) to demonstrate the ef-
fectiveness of the proposed framework.

1. Introduction
Certain faces have intrinsic attributes that impact their

ability to be successfully matched by an automatic face
recognition system. Specifically, the facial appearance of
some subjects exhibits high levels of similarity to other sub-
jects in some population. For example, Figure 1 shows
six groups of subjects who all look very similar with other
members of the group. Different from the pose, expression,
illumination, and aging variates that are known to compro-
mise performance, such intrinsic factors cannot be compen-
sated for through image processing and face modeling tech-
niques. Instead, these subjects pose challenge to the face
matching process because they do not conform to global
thresholds designed to produce accurate genuine matches at
some fixed false accept rate.

In this work we present a matcher-independent frame-
work for improving face recognition performance. This is
achieved by measuring the perceived uniqueness of the sub-

ject in a probe image, and mapping the match score to a
non-match probability estimate [11] which is conditionally
dependent on the uniqueness measure. Called Uniqueness-
based Non-match Estimates (UNE), this proposed frame-
work offers the following benefits and contributions. (i) An
improved generalization of decision thresholds used in the
face matching process. In turn, recognition performance is
increased across the three different matchers studied. (ii)
UNE results in a common range and distribution of match
scores across all face matchers. Consistency between match
scores from different matchers improves the interoperabil-
ity of face recognition with users, (such as biometric system
analysts). (iii) Finally, we introduce the matcher indepen-
dent Impostor-based Uniqueness Measure (IUM), which
measures the uniqueness of subject’s face given a single im-
age of their face.

The paper is organized as follows. In Section 2 we dis-
cuss past studies and their relation to this work. In Section
3 we discuss the different face recognition algorithms used
in this study (two commercial, one proprietary). In Section
4 we propose a novel quality metric that requires only black
box access to any arbitrary face recognition system. In Sec-
tion 5 we detail the procedure for converting face match
scores into empirical non-match probabilities. In Section 6
we present and analyze various experimental results which
demonstrate the value of uniqueness-based non-match esti-
mates. Finally, we conclude this paper in Section 7.

2. Related Work
Doddington’s Biometric Zoo [4] categorizes people

based on how their biometric traits interact with the rest of
the population. The majority of the population are consid-
ered “sheep”, who are generally easy to distinguish given a
good quality sample. A small percentage of the population
fall into the category of “goats”, “lambs”, and “wolves”.
Goats are subjects that have traits which are difficult to
match. Lambs are subjects whose traits exhibit high levels
of similarity to other subjects (all the subjects shown within
each group in Figure 1 would be considered lambs). Wolves
are those able to best mimic other subjects’ traits, and hence
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Figure 1. Six different groups of subjects consisting of members with high facial similarity to the other members of the group. Such subjects
are often referred to as “lambs” [4], and recognizing them across a large population is a difficult task when using a common threshold on
match scores. In this work we detect such subjects using a matcher-independent measure, called the Impostor-based Uniqueness Measure
(UIM). Match scores are mapped to non-match probability estimates based on the IUM score, resulting in improved recognition accuracy.

present risks for spoofing a biometric system. This work fo-
cuses on the lambs in the face biometric.

Improving face matching in the presence of lambs is bet-
ter suited than goats because lambs are a function of their
impostor match score distributions [4]. By contrast, goats
are defined based on their true match score distribution.
While measuring the true match score distribution requires
prior knowledge regarding a subject’s identity and multiple
biometric samples, impostor match scores require no prior
information regarding the subject’s identity and can gener-
ally be determined from a single image.

Because the accuracy of a face recognition system will
be dependent on whether or not a subject exhibits sheep-
like properties, there is strong motivation to measure such
properties in a biometric sample (in our case, a face im-
age). In addition to Doddington et al.’s original measures
for each animal in the biometric zoo [4], Poh and Kittler
offered measures of “sheepishness” (such as their F-ratio),
and demonstrated the ability of these measures to predict
matching accuracy [13]. Poh and Kittler later introduced
the biometric menagerie index (BMI) to further characterize
a subject’s membership in Doddington’s zoo [14]. We refer
to such a measure of where a subject falls in Doddington’s
zoo (e.g., F-ratio, BMI, IUM), by “uniqueness measure”.
Similar to the approach presented in this paper, Poh et al.
performed group specific score normalization based on the
genuine and impostor match scores of a subject [15]. Ross
et al. used such uniqueness measures in a multi-modal bio-
metric system to apply adaptive fusion based on the intrin-
sic weakness of a subject’s biometric characteristics [16].
Other studies have been conducted to measure the general-
ization of zoos across different fingers [7] and face matchers
[17]. The presence of zoos on datasets with several hundred
subjects has been previously studied [19, 18].

These earlier studies [13, 14, 16, 15] that measure are
limited in that the uniqueness measures for a specific sub-
ject were based on generative methods that require multiple

samples per subject. Thus, these approaches perform user-
specific training. In most applications of face recognition
one cannot expect multiple face images per subject, limit-
ing the role of these methods. Further, these approaches are
designed for 1:1 verification. In identification tasks, there
is no such identity claim and the per-user model would re-
sult in a different uniqueness measure for each subject in
the gallery that is compared to a probe image. For large
face databases in the order of millions of subjects, such an
approach is again not feasible.

By contrast, the impostor-based uniqueness measure of-
fered in this paper (see Section 4) utilizes only a single im-
age of a subject, and does not require any claimed identity.
Thus, while it is not directly comparable to previous tech-
niques, it serves as a compliment to those approaches for
scenarios in which it cannot be assumed that multiple im-
ages per subject are available in the database.

A second aspect of our work is a mapping of a match
score to a uniqueness-based non-match probability estimate
(see Section 5). The approach is motivated by Choi et
al.’s use of evidential non-match probabilities in fingerprint
recognition [11]. Using training data in the form of im-
poster and genuine match scores from a biometric matcher,
they computed the probability that a given match score
would result from a comparison of two different subjects.
While Choi et al. applied this technique to facilitate the ad-
missibility of fingerprint match scores as legal evidence, we
instead show how this approach can be used to alter deci-
sion thresholds in the face recognition process. Choi et al.’s
also reported that fingerprints of different qualities resulted
in different evidential non-match probability distributions.
We also extend this notion of quality to the uniqueness (or
intrinsic quality) of a biometric (face) sample, as motivated
by our discussions of the biometric zoo. The approach was
similarly applied by Poh et al. using multiple samples per
subject to categorize their uniqueness [15].

Our motivation to alter decision thresholds based on con-
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Figure 2. ROC plot comparing the face recognition accuracy
when using probe images with “higher” uniqueness and probe
images with “lower” uniqueness, using the proposed impostor-
based uniqueness metric (IUM). Match scores were generated
from 8,000 subjects using FaceVACS. This work reduces the FRR
by conditionally mapping a match score to an estimated non-match
probability based on the uniqueness of a face image.

textual information is also based on several findings that
biometric systems exhibit different accuracies depending on
the general quality of a biometric sample being matched. It
is well documented that the accuracy of face recognition
systems is a generally monotonic function of the quality of
the face image samples [10, 12, 8, 3, 9]. In general, qual-
ity is encompassing of the pose, expression, illumination,
compression, time lapse, and uniqueness of a subject.

In addition to face recognition systems being sensitive
to the quality of the samples being matched, Grother and
Tabassi [6] also demonstrated that the accuracy of a bio-
metric system can generally be predicted by the biometric
quality metric. A key contribution of our work here is the
demonstration that such decision thresholds can be normal-
ized by converting face match scores to the empirical non-
match probability estimates which are conditionally depen-
dent on the facial uniqueness (see Figure 5 for an overview
of this approach).

3. Face Recognition Algorithms and Databases
This study evaluates the benefits of proposed

uniqueness-based non-match estimates using three different
face recognition algorithms. The first two algorithms are
commerical off the shelf (COTS) matchers: Cognitec’s
FaceVACS [1] and Neurotechnology’s VeriLook [2]. The
third face recognition algorithm is our proprietary algo-
rithm, called Anonymous Proprietary Algorithm1 These
matchers are all used as black box systems which are
capable of outputting a measure of similarity between two
facial photographs.

This study uses face images from 16,000 subjects which
come from an operational database maintained by the Pinel-

1Details of the algorithm have been omitted to maintain anonymity.

las County Sheriff’s Office.
Two images per subject were used in this study: one for

a gallery seed, and the other for a probe/query. We used
the first 8,000 subjects in the dataset for training purposes,
and the remaining 8,000 subjects for testing. Both the train-
ing and testing set were controlled to contain 2,000 white
males, 2,000 black males, 2,000 white females, and 2,000
black females. No subject used in training was used for
testing. The training dataset was used in two capacities:
(i) to compute the impostor-based uniqueness measure (see
Section 4), and (ii) to learn the non-match probability dis-
tributions (see Section 5).When computing the IUM for the
images in the training set, their mated images were removed
(i.e. only the impostor comparisons were considered).

4. Uniqueness Measure
A subject whose face is non-unique, or is a “lamb”, will

generally exhibit high levels of similarity to many other sub-
jects in a large population (by definition). Based on this ba-
sic assertion, a subject’s uniqueness is measurable through
how similar he is to a population of impostors. We assume
that (i) only a single image for the subject is available, and
(ii) the identity of the subject is not claimed. Given these
constraints, we define the impostor-based uniqueness mea-
sure as the mean match score to a set of impostor subjects.

Let S(i, j,m) denote the match score between face im-
ages from subjects i and j using matcher m (e.g., m =
FaceVACS). Given a set of n subjects J = {j1, j2, . . . , jn},
which represent impostor face images, the impostor-based
uniqueness metric u for subject i against the set J and
matcher m is defined as

u′(i, J,m) =
1

n

n∑
k=1

s(i, jk,m) (1)

u(i, J,m) =
max(u′

J)− u′(i, J,m)

max(u′
J)−min(u′

J)
(2)

where min(u′
J) and max(u′

J) are the minimum and maxi-
mum u′ values computed within the set J (respectivelly). If
u(i, ·, ·) is high, we can infer that subject i’s face is gener-
ally unique. Conversely, a low value for u would infer the
subject contains a more typical looking face.

We found that the IUM is quite consistent regardless of
the impostor subjects used. This is shown in Figure 4, where
the IUM value for all 8,000 probe images in the test set were
computed using both the training set (labeled Set 1) and the
7,999 impostors in the test set (labeled Set 2). When the
IUM was computed for Set 1, the number of impostors was
steadily increased from 100 subjects to 8,000 subjects. In
each case, plots also list the linear correlation between the
IUM measure computed from the two different sets. Even
when the IUM was computed using only 100 impostor im-
ages from Set 1, the correlation with the IUM computed



Low Measured Uniqueness:

FV: 0.00 FV: 0.05 FV: 0.08 FV: 0.08 FV: 0.09
VL: 0.24 VL: 0.26 VL: 0.13 VL: 0.18 VL: 0.15

(a)
High Measured Uniqueness:

FV: 0.68 FV: 0.69 FV: 0.69 FV: 0.70 FV: 0.70
VL: 0.88 VL: 0.89 VL: 0.87 VL: 0.88 VL: 0.88

(b)
Figure 3. (a) Face images with low computed uniqueness using
the proposed IUM. (b) Faces images with high computed unique-
ness. Faces in (b) will generally match with higher accuracy than
those in (a), and should therefor be thresholded differently. Black
subjects were found to have consistently lower IUM’s than white
subjects in our study (indicating a potential bias in the studied face
recognition systems). FV:FaceVACS; VL: VeriLook.

using 8,000 subjects from Set 2 was 0.92. If we increased
the impostors in Set 1 to 1,000, subjects the correlation was
0.99. We see from Figure 4 that the proposed IUM value
becomes stable with a database of 1,000 subjects.

Considering operational use of such a measure, storing
1,000 templates for computing IUM is not a hurdle. As an
example, in FaceVACS a face template is roughly 2KB in
size, so storing 1,000 templates would require only 2MB of
space in the enrollment module. In terms of computation
time, modern face matchers are generally expected to oper-
ate at speeds of at least 1,000 face comparisons per second.
Thus, computing this measure should take no more than one
second during the offline enrollment.

Finally, IUM offers a generally accurate predication of
recognition accuracy. For example, using the 8,000 test sub-
jects, Figure 2 shows the ROC plots from the 4,000 subjects
with the highest measured uniqueness and the 4,000 sub-
jects with the lowest measured uniqueness (using the IUM
computed against the training set). A clear difference in
recognition accuracy is noted between subjects with high
IUM and subjects with low IUM, particularly in the criti-
cal region of ROC corresponding to low false accept rates
(FAR). For example, the more unique subjects matched with
nearly 5% higher accuracy than the less unique subjects at
low false accept rates. Example of face images with the
lowest and highest IUM’s can be seen Figure 3.

5. Evidential Non-Match Probabilities
Similar to the demonstration by Grother and Tabassi [6]

of how the accuracy of a biometric system can generally be
predicted by the systems quality metric, the results in Fig-
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Figure 4. Generalization of the impostor-based uniqueness mea-
sure (IUM). The scatters plots contain corresponding IUM
for 8,000 images computed using impostors from two non-
overlapping datasets. The high correlation indicates this measure
of uniqueness generalizes well when using different sets of impos-
tors. The number of impostors used to compute the IUM from the
first set (x-axis) are: (i) 100, (ii) 1,000, (iii) 4,000, and (iv) 8,000.

ure 2 show a correlation between recognition performance
and inferred uniqueness. This suggests a global decision
threshold on match scores is not generally desirable. In-
stead, the decision threshold should be altered based on the
image quality or any other contextual information that cor-
relates with match scores.

Recently, Choi et al. [11] proposed normalizing match
scores into evidential non-match probabilities. Specifically,
given a match score s, the non-match probability (NMP) is
defined as

NMP = P (I|s) = 1− P (G|s) (3)

P (G|s) = P (s|G)P (G)

P (s|I)P (I) + P (s|G)P (G)
(4)

where I is the event of an impostor comparison, and G is
the even of a genuine comparison. Given a sufficiently large
training set of match scores, genuine and impostor score
densities P (s|G) and P (s|I) can be estimated. Following
Choi et al., we estimate these distributions using kernel den-
sity estimation (KDE) [5]. For KDE, we used a Gaussian
kernel with a bandwidth set as the standard deviation of the
match scores. We tacitly assume that the prior probabili-
ties for impostor and genuine subjects P (I) and P (G) to
be equal as we simply use the computed non-match proba-
bility estimates for score normalization.

Using this approach, match scores output by face match-



ers from any range, such as (−∞,∞) or (0, 255), will now
be converted to the range [0, 1]. Further, having learned the
match score distributions from the kernel density estimates,
a NMP match score from any face matcher generally has the
same interpretation. For example, an NMP score of 0.95
from both FaceVACS and VeriLook should have roughly
the same likelihood of being the same subject. Section 6
will show how such a normalization of match scores can
improve users who interact with multiple face recognition
systems.

5.1. Uniqueness-based NMP

The aforementioned non-match probabilities convert
match scores to probability estimates that share a common
range of [0,1]. It is important to point out that such map-
pings are monotonic with respect to the input match scores,
and they will not alter the ROC performance.

In order to choose an appropriate decision threshold, we
leverage the impostor-based uniqueness measure defined in
Section 4. If we separate subjects into nU different levels
of uniqueness based on their IUM, then we can learn a sep-
arate NMP mapping for each uniqueness level. Let U ∈ Rn

be the vector of IUM values u for the n training subjects
for a given matcher. Recall we can compute the IUM using
the impostors within the training set. For a given unique-
ness level l ∈ l1, l2, . . . , lnU

, we compute the non-match
probability NMPl as

NMPl = P (I|s, l) = 1− P (s|G, l)

P (s|I, l) + P (s|G, l)
(5)

where the likelihoods P (s|G, l) are P (s|I, l) are condition-
ally dependent on the uniqueness level l as well as the match
score s. We estimate these likelihoods in the same manner
as before: kernel density estimation. However, these distri-
butions are estimated using only probe subjects whose IUM
falls within the level l. The gallery images from subjects
whose probe image is not in this level are still retained as
impostors when generating the density estimates.

We partition subjects into three levels of uniqueness:
low, average, and high. High subjects are those whose IUM
is more than one standard deviation above the mean IUM.
Average uniqueness subjects are those who are within one
standard deviation from the mean. Finally, low uniqueness
subjects are those whose IUM is more than one standard de-
viation below the mean. The mean and standard deviation
statistics are computed using the training set.

Figure 6 shows the NMP mappings that are learned from
each of the three uniqueness levels using the FaceVACS
match scores from the training set; a clear separation is
observed among the three learned mappings. The differ-
ence between these mappings is intuitive: subjects with low
uniqueness are required to have a high match score in order
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Figure 6. Mapping of FaceVACS match scores to uniqueness-
based non-match estimates. Each mapping is learned from sub-
jects with different levels of uniqueness, as defined by the pro-
posed IUM. The learned mappings resulted faciliates a single
threshold for allowing less unique subjects to have higher Face-
VACS match scores than their more unique counterparts.

to generate the same non-match probability as a subject with
high uniqueness. For example, a FaceVACS match score of
0.4 will result in a non-match probability estimate of 0.05
for a subject who falls in the high uniqueness group. In
other words, it is estimated there is a 95% chance that the
two images being compared are from the same subject. By
contrast, the same FaceVACS match score of 0.4 will result
in a non-match probability estimate of 0.24 for a subject
who falls in the low uniqueness group. That is, we now es-
timate that there is only a 76% chance the two images being
compared are from the same subject. Thus, when a subject
is more unique, an initial match score of 0.4 (for example)
will be treated with more confidence. This is intuitive: the
subject does not generally match highly to impostor sub-
jects. By contrast, the subject who is not unique will treat
this same match score more pessimistically as it is more
likely to to be from an impostor subject.

The final framework, called Uniqueness-based Non-
match Estimates (UNE), is shown in Figure 5. For a given
probe image, the measured uniqueness will be used to map
the match scores to non-match probability estimates using
the mapping from the corresponding uniqueness group. In
practice, we use 1−NMP to convert the NMP from a dis-
similarity measure to a similarity measure.

6. Experiments
We first examine how the proposed uniqueness-based

non-match probability estimates affect face recognition per-
formance. We use the 8,000 subjects in the training set to
learn the NMP mappings and populate the impostors for
the IUM. Figure 8 shows the ROC plots when matching
the probe set using (i) the initial match scores from each
matcher and (ii) the proposed uniqueness-based non-match
estimates (UNE). It is noticed that each matcher exhibits
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are computed using kernel density estimation which are conditionally dependent on the measured uniqueness (IUM) of the face image.

Probe Mate Impostors:

Figure 7. The probe images (first column) from each subject cor-
rectly matched their mate (second column) using FaceVACS at a
threshold that yields a false accept rate of 0.1%, . However, the
impostor images in columns 3-6 where incorrectly classified as
matches to the corresponding probe image. When the FaceVACS
match scores were mapped to QNE scores, all subjects still cor-
rectly matched their mate, but no longer matched the impostors
shown. The implicit change in threshold for each subject based on
their measured uniqueness allowed for such improvements.

a decrease in recognition error with the proposed method.
Thus, without any specific knowledge of a matcher (e.g.
face representation, feature extraction, matching strategy),
we are able to improve the face recognition accuracy.

Figure 7 shows examples of subjects who matched cor-
rectly to their genuine mate as well as to the shown impostor
subjects using the FaceVACS match scores when operating
at a false accept rate of 0.1%. After converting these match
scores to UNE scores, the impostors for each subject no
longer exceeded the matching threshold and were properly
classified as non-matches. These examples show the value
of UNE scores when applied to watch list or open set iden-
tification (1:N+1) scenarios. In these cases it is ideal to
set a stringent threshold that does not generate many false
matches (as these are costly to manually eliminate), yet still
maintains a low false reject rate. As observed from the
ROC plots in Figure 8, the largest accuracy improvement
obtained using UNE was obtained when operating at low
false accept rates.

Figure 9 shows the histogram distributions of true and
false match scores with and without UNE. The histograms
are computed from 4,000 true match and 6.37 × 107 false
match comparisons for each of the three matchers in this
study (FaceVACS, VeriLook, and 4SF). When using UNE
instead of the raw match scores, the distributions exhibit
less overlap in the middle of the range of the distributions.
Further, the extremes of each distributions are more peaked
when using UNE. The change in distributions from raw
match scores to UNE scores results in match score distri-
butions which are better suited for a threshold. That is, with
the false and true match distributions attenuating faster with
UNE than without, improved match decisions are made
within the range of thresholds containing these regions of
decreased overlap. In turn, this results in the decreased FRR
shown in Figure 8.

A final contribution of this work is a demonstration
of how non-match probability estimates conditioned on
uniqueness can be used to increase user operability of face
recognition systems in retrieval systems. Because the mea-
sure of similarity output by face recognition systems dif-
fers between vendors and algorithms, match scores are typ-
ically not shown to system analysts when retrieving match
candidates. However, using uniqueness-based non-match
estimates: (i) the mean match scores of correct (Rank-
1) retrievals from different face recognition algorithms are



Without UNE:

FaceVACS VeriLook 4SF

Rank-1* 0.95± 0.11 132.50± 90.02 0.94± 0.10
True Scores 0.89± 0.22 115.77± 91.88 0.82± 0.23
Impostor Scores 0.06± 0.07 2.37± 4.57 0.07± 0.11

With UNE:

FaceVACS VeriLook 4SF

Rank-1* 1.00± 0.00 1.00± 0.00 1.00± 0.00
True Scores 0.96± 0.17 0.94± 0.21 0.93± 0.19
Impostor Scores 0.04± 0.09 0.05± 0.11 0.07± 0.12

* Rank-1 is the true match scores for subjects which were correctly retrieved at Rank-1.
(a) (b)

Table 1. The mean and standard deviation statistics of match scores with and without the propose UNE score normalization. The statistics
demonstrate the improved intra-matcher consistency (i.e., the stability of match scores within a single matcher) and inter-matcher con-
sistency (i.e., the consistency of match scores from different matchers) when match scores are converted to uniqueness-based non-match
estimates. High inter-matcher consistency offers strong benefits in terms of human inter-operability with face recognition systems.
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(a) (b) (c)
Figure 8. ROC plots showing the recognition performance both with and without the proposed uniqueness-based non-match estimates.
The decrease in the false reject rate (FRR) demonstrates an improved generalization of the decision thresholds after applying the proposed
score normalization technique. (a) FaceVACS. (b) VeriLook. (c) 4SF.

made to be nearly the same regardless of the given match-
ers score distribution, and (ii) the variance of correct Rank-1
retrieval match scores can be significantly reduced. These
two achievements greatly increase a system analyst’s abil-
ity interpret match scores across different queries and face
recognition algorithms.

For example, Table 1 lists the mean and standard devia-
tion of match scores on the test set of 8,000 subjects with
and without the proposed UNE score normalization. The
first row lists the average match score of a correct Rank-
1 retrieval. Without QNE, we see that FaceVACS outputs
an average score of 0.95 whereas VeriLook outputs an aver-
age score of 132.5. This substantial difference demonstrates
the diffuses users of multiple face recognition systems face
when interpreting match scores. By contrast, FaceVACS
and VeriLook both have an average match score of 1.0 when
using UNE scores. Thus, in addition to improving face
recognition accuracy, UNE’s also improve the consistency
across heterogeneous face matchers.

7. Conclusions
Face recognition systems are operated as blackbox sys-

tems that, given two face images or templates, output a
measure of similarity between the two biometric samples.
In most forensic and operational scenarios these similarity

measures are used to retrieve a list of candidate matches
(1: N matching), determine whether two specific match
companions are the same subject (1: 1 matching), or deter-
mine if an image matches to a watch list (open set identifi-
cation, 1:N+1).

In mapping the three studied matchers’ match scores to
uniqueness-based non-match estimates (UNE), we demon-
strated how each of these matching scenarios can be im-
proved. For retrieval applications, the ability of UNE to
map different score distributions to a common range and
shape offers a consintent interface for a human analyst and
the retrieval results provided. For 1: 1 comparisons, the
UNE match scores offer improved generalized of the thresh-
old used for determining a match. Similarly, in open set
identification the improved threshold generalization allows
for less false positive hits while mainting a given accuracy.

While the results provided demonstrated the efficacy of
the proposed UNE framework, we see several avenues to
expand the score normalization technique. For instance, in
addition to uniqueness, factors such as image quality and
subject demographics can influence face recognition accu-
racy. Thus, future studies will determine whether emperical
non-match probability estimates that are conditionally de-
pendend on image quality, race, or gender (in addition the
IUM) can further improve the recognition accuracy.
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Figure 9. Histograms of match score distributions with (top row) and without (bottom row) uniqueness-based non-matches estimates
(UNE). (a) FaceVACS. (b) VeriLook. (c) 4SF. When match scores are converted to UNE’s, (i) the tails of the impostor and genuine scoore
distributions attenuate faster (resulting in less overlap), and (ii) the UNE distributions for each matcher are highly similar to one another.
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