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Abstract

Image sequences with dynamic backgrounds often cause
false classification of pixels. In particular, varying illumi-
nations cause significant changes in the representation of
a scene in different color spaces, which in turn results in
the high levels of failure in such conditions. Because map-
ping to alternate color spaces has largely failed to solve this
problem, a solution of using alternate image features is pro-
posed in this paper. In particular, the use of gradient and
texture features along with the original color intensities are
used in an ensemble of Mixture of Gaussians background
classifiers. A clear improvement is shown when using this
method compared to the Mixture of Gaussians algorithm
using only color intensities. In addition, this work shows
that performing background subtraction using only gradient
magnitude as an image feature performs at a much higher
rate in varying illuminations then using color intensities.
Results are generated on three separate datasets, each with
unique, dynamic, illumination conditions.

1. Introduction
Automated tracking systems have progressed signifi-

cantly over the past decade, particularly when used in
indoor and controlled environments. Unfortunately au-
tonomous tracking in outdoor environments is still crippled
by many of the complex characteristics of outdoor environ-
ments. Dynamic backgrounds (such as moving trees, rip-
pling water, etc.) and illumination changes are some of the
most difficult types of background events to correct classify.

In background classification each frame in an image se-
quence is initially segmented into foreground and back-
ground regions, where the foreground regions represent
moving objects that are of interest to a high level track-
ing system. Generally, these objects are limited to animals
and moving vehicles. Background regions are the com-

plement of the foreground regions. The process of pix-
elwise segmentation of an image into these two classes
is commonly referred to as background subtraction, fore-
ground/background segmentation, and background classifi-
cation. It is common to build a statistical model that can be
updated with an iterative algorithm to characterize the back-
ground. Outliers from the model are cast as foreground.

Accurate background subtraction is vital to tracking sys-
tems. Tracking systems seek to infer high level semantics
from an observed scene, such as traffic monitoring, target
acquisition, and biometric identity. The more false hypothe-
ses the high level algorithms receive from a segmentation
algorithm the worse the expected overall performance of the
system. For this reason there has been a significant amount
of research for improving foreground/background segmen-
tation.

1.1. Related Works

In [24], Stauffer and Grimson first proposed using the
Mixture of Gaussians algorithm for background subtrac-
tion, which has since become the most common approach
to background subtraction. This is a progression from mod-
eling each pixel as a single Gaussian distribution [27]. In
the Mixture of Gaussians algorithm, each pixel is char-
acterized by multiple, weighted, Gaussian distributions.
Each distribution corresponds to an observed mode, and
its weight represents each modes frequency of occurrence.
As a new pixel pi,j is processed, each Gaussian distribu-
tion Di,j(l) ∼ N(µ, σ) is checked to see if it matches pi,j ,
where (1 ≤ l ≤ K) and K is the number of distributions.
A match is when a pixel is within 2.5 deviations from the
distribution’s mean. Mi,j(Di,j(l), pi,j) is 1 if distribution
Di,j(l) matches pixel pi,j , and 0 otherwise. The weights
of the distributions are updated using Equation 1, where
0 < α < 1 is the learning rate, and wi,j(l) is the weight
of the lth distribution at location (i, j). The pixel pi,j is
considered a member of the background if βi,j from Equa-
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tion 2 is greater than the predefined threshold τ , where typ-
ically τ ≈ .2. So the more times a distribution is matched,
the heavier its weight becomes. The heavier a distribution’s
weight, the more likely it represents the background.

wi,j(l) = Mi,j(Di,j(l), pi,j) · α+ wi,j(l) · (1− α) (1)

βi,j =
K∑
l=1

wi,j(l) ·Mi,j(Di,j(l), pi,j) (2)

Many variations of the Mixture of Gaussians algorithm
have been proposed. In [12], KaewTraKulPong and Bow-
den use Mixture of Gaussians with varying learning rates
that allows the algorithm to adapt to change faster. Shadow
detection is explicitly addressed by working in a chromatic
color space, similar to the one used by Horprasert et al. in
[9]. In [7], Gordon et al. incorporate depth information into
the Mixture of Gaussians algorithm. While additional sen-
sors are required, combining depth information creates an
algorithm more robust to illumination changes. In [10],
Jabri et al. were one of the first to use image gradient in-
formation as a feature for tracking. Javed et al. used gra-
dient magnitude and orientation, as well as the RGB inten-
sities, to create a five dimensional Mixture of Gaussian al-
gorithm in [11]. While computing the edge features incurs
additional computation, the use of these features results in
a more illumination invariant feature space.

In [8], a non-parametric background subtraction algo-
rithm was presented using texture features in the form of
a local binary pattern. In [28], Zhong and Sclaroff used tex-
ture information in conjunction with a Kalman filter back-
ground subtraction algorithm. Other Kalman filter based
approaches can be found in [16, 22].

Background classification using motion information has
also been used for background classification and tracking.
Examples of these works can be found in [26, 17].

Another family of background subtraction algorithms
uses global image information in order to determine which
pixels belong to the background and foreground processes.
Eigenbackgrounds [18] and pixel layering [6, 21] are some
examples of these methods.

The use of ensembles in background subtraction has not
been heavily investigated. Avidan uses an ensemble of clas-
sifiers via the Ada Boost algorithm in [4]. This approach
requires labeled training data that contains the locations of a
specific object to be tracked. While this algorithm is highly
effective, it is only capable of tracking one specific object,
and requires labeling data offline.

1.2. Proposed Method

In this paper, a new algorithm for background subtrac-
tion is proposed. This algorithm is a meta-learning algo-
rithm that incorporates multiple instantiations of the Mix-

ture of Gaussian algorithm. By operating on 13 different
image features, this algorithm demonstrates a significantly
heightened performance on image sequences with varying
illuminations. A surprising consequence of this research
was the exceptional performance of using only edge fea-
tures for background subtraction.

The motivation for this work arose from the failures of
mapping RGB color spaces to alternate color spaces that are
ideally illumination invariant. Figure 1 shows two frames
taken from the OTCBVS dataset [1]. The images on the
left are the scene under sunny condition, and the images on
the right are the same scene after a cloud covers the sun.
The RGB, hue, saturation, and gradient magnitude values
for both frames are shown. Of particular note is the fact
that the hue and saturation are both highly variant to this
change, while the gradient magnitude is to a much lower
extent. Similar robustness was observed in the texture fea-
tures used in this work. Continued failures using alternate
color spaces in illumination varying datasets inspired the
approach presented in this paper.

This paper represents the first known work to fuse mul-
tiple unsupervised background classifiers. Additionally, it
is the first known work to use texture information derived
from Haar features in background subtraction. The remain-
der of the paper is outlined as follows: Section 2 provides a
description of the feature set used for classification. Section
3 describes the ensemble algorithm used for background
classification. Results of our algorithm compared against
an open source implementation of the Mixture of Gaussians
classifier on three publicly available datasets are shown in
Section 4. Concluding remarks are presented in Section 5.

2. Feature Space

The first step in the proposed background classification
algorithm is to separate an image into distinct features.
Thirteen different features are used. The first three features
are simply the intensities values for the red, green, and blue
image channels. These features may take a range of 0 to
255.

The next two features are the image gradient and magni-
tude. A simple Canny edge detector [5] is used, with σ = 2.
If the gradient in the x and y directions are

Gx(i, j) = p̃i,j − p̃i−σ,j

and

Gy(i, j) = p̃i,j − p̃i,j−σ

where p̃ is a Gaussian smoothed pixel, then the magnitude
and orientation feature values for pixel pi,j can be calcu-
lated using Equations 3 and 4, respectively.



(a) Original Image, no shadow (b) Original Image, shadow

(c) Hue Image, no shadow (d) Hue Image, shadow

(e) Saturation Image, no shadow (f) Saturation Image, shadow

(g) Gradient Magnitude, no
shadow

(h) Gradient Magnitude, shadow

Figure 1. Effects of varying illumination on different features

GM (i, j) =
√
G2
x(i, j) +G2

y(i, j) (3)

Gθ(i, j) = arctan (Gy(i, j)/Gx(i, j)) (4)

The final eight features used are Haar features, which act
as low cost texture estimates over a region of pixels. The
emergence of Haar features in pattern analysis and com-
puter vision began with Papageorgiou et al. in [19, 20], and
have received particular attention after their use in object
detection by Viola and Jones in [25].

Haar features offer simple texture estimations over an
image subregion at a low computational cost. The eight
Haar features being used in this paper can be viewed in Fig-
ure 2. Haar features are particularly desirable because they
can be quickly computed by using an integral image, which

Figure 2. Set of Haar features being used

was shown by Lienhart and Maydt in [15] to be computable
in one pass of the image.

By consequence of computing the texture in the 12x12
region surrounding each pixel, spatial information is incor-
porated into Haar feature. So while the algorithm being pre-
sented remains a local background subtraction method, the
Haar features incorporate information regarding neighbor-
ing pixels.

3. Algorithm
The algorithm used is an ensemble algorithm that con-

sists of 13 Mixture of Gaussian classifiersCk (1 ≤ k ≤ 13).
Each classifier operates exclusively on one of the 13 fea-
tures from the feature set described in Section 2. After each
classifier Ck has processed a frame, the hypothesis Hi,j(k)
of each classifier is then fused, resulting in a single hypoth-
esis Hi,j for each pixel pi,j , where Hi,j ∈ {B,F}.

The fusion method used is the average rule, which has
been shown to be the most effective method of fusing
equally weighted hypotheses [13, 14]. Equations 5 and 6
show how the single, per-pixel hypothesis Hi,j is generated
using the average rule.

Ĥi,j =
1
n

13∑
k=1

Hi,j(k) (5)

Hi,j =
{
B if Ĥi,j ≥ τ
F otherwise

(6)

The ability to use average rule fusion is because the Mix-
ture of Gaussians algorithm is able to generate a degree of
membership, as opposed to a classifier which only gener-
ates a binary decision. While the final result of the Mix-
ture of Gaussians classifier is a binary decision, this re-
sults after a membership degree β is thresholded. Therefor,
Hi,j(k) = βi,j . As was seen in Equation 2, the value βi,j is
the sum of the weights of all distributions that match pixel
pi,j . Averaging each of the classifier’s βi,j values and then
thresholding based on τ allows for more information to be
used in the fusion of the classifiers.

It is tempting to think that the ensemble algorithm pre-
sented can be reduced significantly in complexity by using a
13 dimensional Gaussian mixture model instead. While us-
ing a single classifier that models the data in 13 dimensions
would drastically reduce the computational complexity of
the algorithm, it would also result in a very different algo-
rithm. To better understand this fact, consider Equation 1.



Table 1. Dataset details
Algorithm GT Frames FG Objects Resolution
OTCBVS 16 75 320 x 240

PETS 2001 22 53 768 x 576
PETS 2006 20 66 720 x 576

A distribution’s weight is only updated if it is matched. Yet,
in order for a match to occur under a 13 dimensional model,
the incoming feature vector must be within 2.5σ of the mean
for each dimension. Therefor, if one of the 13 dimensions
does not match then the entire feature vector is considered
non-matching. Using an ensemble, each dimension has its
own classifier with one dimensional distributions. A match
is based only on that dimensions current value. This allows
each classifier to update independently of the other feature
values.

Because each classifier operates on a single feature and
has a limited access to information, it makes each classi-
fier more along the lines of a theoretically ”weak” classi-
fier. According to predominate ensemble classifier theory,
presented originally by Schapire in [23], these weaker hy-
potheses can be fused into a single strong hypothesis.

4. Results

Three publicly available datasets were used to evaluate
the performance of the ensemble algorithm. These sets are
the PETS 2001 dataset [2], the PETS 2006 dataset [3], and
the OTCBVS dataset [1]. The PETS 2001 and OTCBVS
datasets are both outdoor datasets. The OTCBVS dataset
is plagued with varying illumination caused from passing
clouds, and is the most difficult dataset. The PETS 2001
dataset has a gradual illumination change at the end of the
testing sequence. The PETS 2006 dataset is an indoor
dataset, though the floor causes specular reflections of the
foreground objects. The number of ground truth frames, to-
tal foreground objects, and image resolution for each dataset
can be found in Table 1. The ground truth frames used were
spaced throughout the entire dataset, i.e. they are not from
consecutive frames and they span the entire set.

Three separate algorithms were evaluated. The first is
the ensemble algorithm presented in this paper, which we
will refer to as Ensemble MofG. The next is the Mixture of
Gaussians algorithm implemented in Intel OpenCV, which
is based on the work in [12]. This algorithm will be called
OpenCV MofG, and serves as a baseline performance indi-
cator. The final algorithm used is a single dimensional Mix-
ture of Gaussians algorithm which operates only on the gra-
dient magnitude feature. This algorithm will be referred to
as Gradient MofG. Parameters for each algorithm were opti-
mized by evaluating their performance on separate training
sequences for each dataset.

ROC analysis was used to evaluate the performance of

Table 2. Each algorithm’s false positive rate at 90% true positive
performance

Algorithm OTCBVS PETS 2001 PETS 2006
Ensemble .0204 .0014 .0019
Gradient .0601 .0028 .0044
OpenCV .1825 .0202 .0165

each algorithm. Bounding boxes of foreground objects were
used as the ground truth. For each foreground object, a true
positive classification was considered to be when at least
25% of the pixels within that objects bounding box were
classified as foreground. False positives were measured as
the percentage of pixels outside the bounding box that were
incorrectly classified as foreground. In order to generate
the various points on the ROC plots, the threshold τ from
Equation 6 was varied. A lower τ results in less true pos-
itives and less false positives, while a higher τ results in
more true positives and more false positives.

The results over the entire datasets are seen in Figure
3. In all three datasets the ensemble algorithm offered the
optimal performance. The Gradient MofG algorithm out-
performed the OpenCV MofG, which was an initially unex-
pected result when conducting this research. Table 2 shows
each of these algorithms false positive rates when operat-
ing at a 90% true positive rate over the entire ground truth.
When compared to the proposed ensemble algorithm, the
baseline OpenCV Mixture of Gaussians algorithm had 50
times as many false positive pixels in the OTCBVS dataset,
14 times as many in the PETS 2001 dataset, and 8 times as
many in the PETS 2006 dataset.

Figure 4 shows each algorithm’s performance at each
ground truth frame. These results help substantiate the
claim that the heightened performance when using Ensem-
ble MofG and Gradient MofG over OpenCV MofG are due
to greater illumination invariance. Consider the frame by
frame results of the PETS 2001 dataset in Figure 4(b). The
performance of the OpenCV MofG is equal to the two pro-
posed algorithms until the final few frames of ground truth.
These are frames from the end of the data set when a global
illumination change occurs. Both the Ensemble MofG and
Gradient MofG are largely invariant to this illumination
change, while the OpenCV MofG has a significantly dete-
riorated performance. In the PETS 2006 dataset there is no
illumination change. Only the reflection of the foreground
objects on the floor causes false positive classification. This
explains why the OpenCV MofG algorithm cleanly scales
the Ensemble MofG and Gradient MofG. Finally, while the
consistent passage of clouds in the OTCBVS dataset caused
such a significant illumination change that the Ensemble
MofG and Gradient MofG were not entirely invariant to
them, their performance in these conditions was a drastic
improvement over the OpenCV MofG algorithm.

It is important to note the improved performance using
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Figure 3. Global results for each background subtraction algorithm

Gradient MofG. While the Ensemble MofG performed bet-
ter on average, the computational demands are greatly re-
duced in the Gradient MofG algorithm. This fact suggests
the use of the Gradient MofG classifier for systems with
limited resources. The performance of the other individual
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Figure 4. Percentage of false positive pixels in each frame when
classifying at a 90% true positive rate

features, as well as subsets of the entire feature set, were
tested and no significant performances occurred.

Figures 5 and 6 show the classification results for each
pixel of a frame undergoing an illumination change in the



(a) Original Image

(b) OpenCV MofG

(c) Ensemble MofG

(d) Gradient MofG

Figure 5. Classification of a frame from the OCTCBVS dataset
during an illumination change

OTCBVS and PETS 2001 datasets. It is easy to see the clear
failure of classification when only using the color features in
these varying illuminations. The best classification in each
case is when using the Enesemble MofG algorithm, though

(a) Original Image

(b) OpenCV MofG

(c) Ensemble MofG

(d) Gradient MofG

Figure 6. Classification of a frame from the PETS 2001 dataset
during an illumination change

this algorithm still has some false classification, and in the
OTCBVS frame there is one missed person.



5. Conclusion and Analysis
Background subtraction in image sequences with dy-

namic illumination conditions was greatly improved on by
both the Ensemble Mixture of Gaussians and the Gradient
Magnitude Mixture of Gaussians algorithms presented. Re-
sults were compared against an open source implementation
of the Mixture of Gaussians algorithm over three separate
datasets. The best results observed were from the Ensemble
Mixture of Gaussians algorithm.

The ensemble algorithm was able to combine 13 separate
(and generally ”weak”) hypotheses into a single strong hy-
pothesis. Each classifier used a separate feature from a fea-
ture set that included the three RGB features, two gradient
based features, and eight Haar features. The strong perfor-
mance of the Mixture of Gaussians classifier that only used
the gradient magnitude image feature was an unexpected
result of the research conducted. No other single classifier
had significant, individual performances.

The reason that classification was improved upon in
varying illumination conditions is that spatial information
was used while still maintaining a focus on a per pixel clas-
sification approach. When spatial information is not used a
classifier must determine if a future pixel belongs to a fore-
ground or background process based solely on some color
intensity feature. The lack of a truly illumination invari-
ant color space when being restricted to a discrete range of
color intensities results in the change of color intensity dur-
ing an illumination change. This change in intensity cannot
easily be distinguished from an intensity change that results
from a new foreground object. When using spatial informa-
tion as a feature for a pixel (such as edge features or tex-
ture features), a pixel is defined based on its relationship to
neighboring pixels. If each pixel in a neighborhood under-
goes the same change, then the difference between neigh-
boring pixels remains static in ideal circumstances. During
an illumination change, neighboring pixels often experience
the same change in illumination which causes a feature such
as edge intensity or a Haar feature to remain at the same
value. This illumination invariance is precisely what is de-
sired for background subtraction in varying illuminations.

At the same time it is important to incorporate spatial in-
formation for background subtraction, it is also important to
still use the original color intensities as well. We observed
this empirically as our ensemble classifier performed much
worse without the RGB features. This fact is also intuitive
as there needs to be some preciseness to a pixels observa-
tions. That is, incorporating only spatial information loses
focus on the pixel in question. This is believed to be a rea-
son why using only the gradient magnitude performed well
in a single feature classifier. When using a small standard
deviation, the response of the edge detector keeps a tight
neighborhood while still incorporating spatial information.

The ensemble algorithm implemented is not a real time

classifier, yet. However, a high level of parallelism is in-
herent to the algorithm. The code paths for each classifier
in the ensemble are disjoint, implying each could run on a
separate processor or core. Also, shared memory accesses
by each classifier are read-only for accessing the incoming
frame. The only shared memory writes that are needed are
to update the classifiers per pixel hypotheses. So while a
real time implementation was not generated for this paper,
it is believed that using a parallel system would result in real
time performance.
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