
 1

Distribution Overview
This document describes the files, algorithms and test scripts that complement the MBGC data

distribution. The MBGC uses the standard file structures and calling conventions introduced and

used in the FRGC, FRVT and ICE programs. These include a standard calling signature for

executables, signature sets (sigsets) for specifying target and query image sets, similarity

matrices for recording match scores and mask matrices for providing ground truth information.

These standard structures have proven to be extremely robust and flexible across several

biometric modalities.

Briefly, each of the MBGC challenge problems is defined by

1. One or more target sigsets that list a set of enrolled images;

2. One or more query sigsets that list a set of images to be recognized; and

3. One or more mask matrixes that specify which match pairs are matches, non-matches and

don’t cares.

In MBGC, experiments consist of multiple targets such that each subject only appear in a given

target once as opposed to executing one large n×m experiment with one target and one query set.

This allows for normalized matching. The specific combination of targets, queries and mask

matrixes for each experiment is listed at the end of this document in Table E. Further the mask

matrixes only consider true imposter non-matches (e.g. non-matches where the query image is

not in the target set). Non-matching comparisons between query subjects who are in the target set

are ignored (don’t cares).

This document also describes a recommended directory structure for storing the various file

types distributed with the MBGC. While participants are free to utilize any file structure they

choose, the suggested structure is convenient because all of the test scripts and examples assume

that files locations adhere to this structure. Finally, we the last page of the document for helpful

notes to Unix and MS Windows users.

 2

Directory Structure
While there is no required directory structure in MBGC, the sample applications and run scripts

assume the directory structure shown in Figure A. The remainder of this document assumes that

participants have created and organized the appropriate directories as illustrated below. All

experiments (and thus executables) will be instantiated from the top level (mbgc/) directory.

Executables to score the similarity matrices are in the mbgc/bin/ directory. There should be a

subfolder for each challenge problem below the mbgc/ directory. Executables for a particular

challenge problem should be installed in the The mbgc/{challengeproblem}/bin/ directory in that

problems subfolder. The mbgc/{challengeproblem}/bin/ directory also contains Unix shell

scripts and MS Windows batch files which can be used to execute the experiments. Parameter

files needed by the algorithms are in the mbgc/{challengeproblem}/param/ directory. Signature

sets, which list input images for the experiments, are provided in the

mbgc/{challengeproblem}/sigsets/ directory. Mask matrices, which provide the ground truth

(answer key), are provide in the mbgc/{challengeproblem}/maskmatrices/ directory. All output

files (similarity matrices, signature sets, quality score files) generated during experiment

execution will be written to the mbgc/{challengeproblem}/output/ directory by the scripts. Please

ensure that you have write permission to the mbgc/{challengeproblem}/output/ directory.

The downloaded images can be stored in any the appropriate subdirectory. We will refer to this

directory as /data/ in the remainder of this document for clarity. However, you can give this

directory any name you chose -simply change the value of the variable DATA_DIR in the run

scripts to point to your data directory.

 3

Figure A MBGC directory structure.

Executable Calling Signature
It is assumed that all MBGC executables will have a common calling signature. This signature

was used with great success in the FRGC, FRVT and ICE evaluations. It will also be employed if

there is an independent government evaluation at the conclusion of the MBGC. Specifically, the

executable calling signature is:

Table A describes the arguments used above in the executable calling signatures. It is important

to note that all filenames will be relative to the working directory (i.e. mbgc/)directory.

Parameter name Type Format Description
parameter_file Input XML An XML document that specifies experiment

description information, configuration parameters
and the name of metadata files.

image_directory Input string The relative path to the image (data) directory
target_sigset Input Sigset The name of the target signature set. This

document will contain a list of the target images.

executable_name parameter_file image_directory target_sigset query_sigset
similarity_file quality_target_sigset quality_query_sigset

 4

Parameter name Type Format Description
query_sigset Input Sigset The name of the target signature set. This

document will contain a list of the query images.
similarity_file Input/

Output
Similarity

Matrix
The name of the similarity (or distance) file. This
is the primary output data structure.

quality_target_sigset Output
(optional)

Sigset The name of the target sigset to which quality
scores should be written. This file should be a
copy of the input target sigset with quality scores
added. Ignore this parameter if your executable
does not compute quality scores.

quality_query_sigset Output
(optional)

Sigset The name of the query sigset to which quality
scores should be written. This file should be a
copy of the input query sigset with quality scores
added. Ignore this parameter if your executable
does not compute quality scores.

Table A Description of the executable arguments

MBGC/Bin Directory
The mbgc/bin/ directory has two applications. The FRVT2006MatchingExample confirms the

setup of your directory structure and illustrates have to parse and write the standard file types.

The ROCFromMultiSims creates ROC that depicts the accuracy of your algorithm. Follow the

following steps to run these scripts:

1. Compile the matrix, sigset, utilities and xpath libraries in the mbgc/apps/btools/c++/

directory. There are Unix makefiles and Visual Studio projects for making these libraries.

2. Compile the FRVT2006MatchingExample executable under the mbgc/apps/btools/

directory. Place the resulting executables in the mbgc/bin/ directory.

3. Compile the ROCFromMultiSims executable under the mbgc/apps/btools/ directory.

Place the resulting executables in the mbgc/bin/ directory.

4. Set the value of the variable DATA_DIR in the mbgc/(challengeproblem}/bin/ directory.

The variable’s value should be the path to your top level MBGC data directory.

5. Run the script from mbgc/(challengeproblem}/ passing

../bin/FRVT2006MatchingExample as the argument.

The script will output the resulting similarity matrices and roc.txt files in the

mbgc/(challengeproblem}/output/ directory.

 5

FRVT2006MatchingExample
The FRVT2006MatchingExample application is a contrived sample executable that adheres to

the executable calling signature described above. It is in the

mbgc/apps/FRVT2006MatchingExample/ directory. While not useful as a recognition algorithm,

it can be used to confirm that your directory structure is setup properly. When called, it will

parse thru the input target and query signature sets and confirm that all of the required files can

be read. It will also output a similarity matrix (and quality XML signature sets) of the

appropriate dimension to the specified output filename. The source code for the

FRVT2006MatchingExample application is also extremely valuable because it illustrates

examples of parsing, creating and writing all of the standard structures discussed in the

remainder of this document.

Follow these steps to use the FRVT2006MatchingExample:

1. Compile the source using the Unix makefile or Visual Studio project file in the

mbgc/apps/ FRVT2006MatchingExample/ directory.

2. Place the resulting executables in the mbgc/bin/ directory.

3. Set the value of the variable DATA_DIR in the mbgc/(challengeproblem}/bin/ directory.

The variable’s value should be the path to your top level MBGC data directory.

4. Run the desired test script in the mbgc/(challengeproblem}/bin/ directory providing

../bin/FRVT2006MatchingExample as the argument to the script.

The FRVT2006MatchingExample executable can also be called from the command line using

the executable calling signature:

../bin/FRVT2006MatchingExample param/parameter_file.xml …./data/ target_sigset.xml

query_sigset.xml similarity_file.mtx quality_target_sigset.xml quality_query_sigset.xml

ROCFromMultiSims
The ROCFromMultiSims application is an analysis tool that computes FAR and FRR scores that

can be graphed to produce a ROC graph. The algorithm takes as input a parameter file and a

simple XML file that lists pairs of similarity matrices and mask matrices that define the

 6

experiment. It outputs a text file that lists the FAR and FRR scores. The general calling signature

is:

ROCFromMultiSims parameter.xml roc_filename.txt matrix_list.xml

For MBGC, a typical call might be:

../bin/ROCFromMultiSims param/analysis.xml output/test_smrslls_vvnps_roc.txt
param/test_smrslls_vvnps_matrices.xml

Follow these steps to use the FRVT2006MatchingExample:

1. Compile the source using the Unix makefile or Visual Studio project file in the

mbgc/apps/ROCFromMultiSims/ directory.

2. Place the resulting executables in the mbgc/bin/ directory.

3. Run the desired test script in the mbgc/bin/ directory providing our algorithm name as the

argument to the script.

bTools
bTools is a set of libraries for parsing, managing and writing all MBGC data structures including

signature sets, similarity matrices, mask matrices, and XML parameter file. They are easily

compiled using either the Unix makefiles or the Visual Studio projects under the individual

folder in either the mbgc/apps/btools/c++/ or the apps/btools/java/ directories. The use of each

individual library is detailed in the remainder of this document.

MBGC/{ChallengeProbem}/Bin Directory
The mbgc/{challengeproblem}/bin/ directory has both MS Windows batch files and Unix Bash

scripts for executing the experiments. Follow the following steps to run these scripts:

1. Compile the matrix, sigset, utilities and xpath libraries in the mbgc/apps/btools/c++/

directory. There are Unix makefiles and Visual Studio projects for making these libraries.

2. Compile the ROCFromMultiSims executable under the mbgc/apps/btools/ directory.

Place the resulting executables in the mbgc/bin/ directory.

 7

3. Run the desired script from mbgc/(challengeproblem}/ passing the name of the

executable for your recognition algorithm as the argument.

The script will output the resulting similarity matrices and roc.txt files in the

mbgc/(challengeproblem}/output/ directory.

Data Directory
This document assumes that images are stored in seven directories below a main /data/ directory

(see Figure B). The full path to this top-level data directory will be passed as an argument to the

executable. Your algorithm should then append this string to each of the image file listed in the

signature sets. For example, if the parameter image_directory is /home/username/data/ and the

sigset refers to an image named ‘NIR-face-vide/04233v1466.avi’, you should process the image

in the file /home/username/data/NIR-face-video/04233v1466.avi. Note: the value of the

image_directory argument will be consistent with the underlying operating system. Thus,

d:\home\username\data\ and home/username/data/ would be provided for MS Windows and

Linux operating systems respectively.

Figure B MBGC data directory structure

 8

Parameter Files
Overview
Parameter files are XML documents that provide experiment description information and

configuration values for executables. To simplify their processing, configuration values will

always be specified via the values of attributes in the parameter file. We suggest that MBGC

participants adhere to passing information to their algorithms via XML parameter files.

Structure
While there is not a set structure for parameter files, the structure will be similar to the example

shown below in Figure C. In this example, elements are depicted by black text (capitalized),

attributes are shown with blue text (lowercase) and attribute values have red text (uppercase and

in quotes). The Experiment element is the outer element. It has three attributes named name with

value “StillIris_versus_NIRIris”, type with value “Normalized” and feature_extraction_mode

with value “Full”. The Experiment element has three child elements Target, Query and Log_File.

Both the Target and Query elements have four attributes: mode, capture, min_recordings and

max_recordings. The LogFile element has one attribute named name that specifies the name of

the experiment log file.

Figure C Example of a parameter file

Attribute Type Allowed
Values

Comments

name (Experiment) String The text of this string provides a name for the
experiment. This attribute is not needed by
users.

Type enumerated Normalized
1-many

1-1

The enumerated values of this attribute
specify whether the target sets are normalized
(only have one image of each subject, support
1-many matching or 1-1 matching.

feature_extraction_mode enumerated Partial
Full

The enumerated values of this attribute
specify whether ground truth data is provided
to aid in feature extraction. “Full” indicates

<?xml version="1.0"?>
<Experiment name="StillIris_versus_NIRIris" type="Normalized" feature_extraction_mode="Full" >
 <Target mode="StillIris" capture="LG2200" min_recordings="6" max_recordings="6" />
 <Query mode="NIRIris" capture="Portal" min_recordings="2" max_recordings="2" />
 <LogFile name="StillIris_versus_NIRIris_log.txt" />
</Experiment>

 9

Attribute Type Allowed
Values

Comments

that ground truth data is not provided.
“Partial” indicates that ground truth is
provided in the file denoted by the attribute
ground_truth. The MBGC is only considering
fully automatic algorithms.

Mode enumerated 2D
3D

The enumerated values of this attribute
specify whether the images are 2D or 3D face
images.

capture enumerated Controlled
Uncontrolle

d

The enumerated values of this attribute
specify whether the images were captured
under controlled or uncontrolled conditions.

min_recordings integer >0 This integer specifies the minimum number of
images that will be associated with a
signature.

max_recordings integer >0 This integer specifies the maximum number
of images that will be associated with a
signature.

Name (LogFile) string Filename All logging information generated by the
program should be written to this file in the
output directory.

Table B Description of elements in the similarity header.

Parsing
Due to their simple structure, parameter files are readily parsed with any XML or XPath parser.

Source implementation of C++ and Java classes for parsing parameter files are provided in the

BEETools (Biometric Experimentation Environment) distribution in the

mbgc//apps/btools/c++/xpath/ and the mbgc/apps/btools/java/xpath/ directories. These classes,

which use the XPath parser, are available for modification by MBGC participants. Parsers will

not be made available for other languages (e.g. Matlab). However, users should be able to easily

create parsers in other languages using the C++ classes as a guide.

Writing
MBGC users will not be required to write (output) parameter files.

Signature Sets (Sigsets)
Overview
Signature sets (sigsets) are the primary input structure for MBGC. They are used to list the files

in the target and/or query sets. They will also be the standard format used to output quality

information.

 10

Structure
The signature set document will provide a list of images. XML will be used because its

hierarchical structure facilitates a flexible representation of the relationships between subjects,

sessions, sensors and files. Specifically, the signature set will consist of a list of Signature

(subjects) elements. Each Signature element will contain one or more Presentation child

elements that correspond to capture sessions. Each Presentation element will contain one or

more Component elements that correspond to a sensor. Lastly, each Component will have one or

more Data elements that correspond to a file.

Figure D illustrates the general signature set structure with elements depicted by black text,

attributes depicted by blue text (lowercase) and attribute values depicted by red text (uppercase

and in quotes). This example has two complex-biometric-signature elements and thus

represents two subjects. (Note: While complex-presentations grouped under a single complex-

biometric-signature are guaranteed to correspond to the same subject, separate signatures may

correspond to the same subject.) The signatures are named “nd1S05288” and “nd1S05156”. Both

signatures have a single complex-presentation (capture session) in the face modality labeled

“nd1S05288” and "nd1S05156" respectively. The presentations each have two presentation-

component elements that correspond to the two sensors in the portal. One component

corresponds to NIR face video sensor and produces a video stream stored as a data (file) in the

avi format. The other component corresponds to the HD camera which produces a visible face

video stored in the MPEG2-TS format.

 11

Figure D Example of a signature set.

Parsing
Signature sets are difficult to parse due to their rich hierarchical structure. Fortunately, C++ and

Java classes for parsing similarity matrices are provided in the BEE (Biometric Experimentation

Environment Toolset) Tools distribution in the mbgc/apps/btools/c++/sigset/ and the

mbgc/apps/btools/java/sigset/ directories. We also provide examples for the use of these parsers.

It is important to note that some of the BEE Tools examples assume the simplified sigset

structure in which each signature has precisely one Presentation, each Presentation has precisely

one Component and each Component has precisely one Data member. Care should be used when

using this simplified version of the similarity structure. Parsers are not provided for other

languages (e.g. Matlab). However, users should be able to create a Java wrapper that parses the

signature set and passes the appropriate data structures to the executables.

<?xml version="1.0" encoding="UTF-8"?>
<biometric-signature-set xmlns="http://www.bee-biometrics.org/schemas/sigset/0.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bee-biometrics.org/schemas/sigset/0.1
 http://www.bee-biometrics.org/schemas/sigset/0.1/general.xsd">

<complex-biometric-signature name="nd1S05288" >
 <complex-presentation name="nd1S05288" modality="Face" >
 <presentation-component name="NIR_Face" >
 <data file-name="NIR-face-video/05288v4.avi" file-format="avi" />
 </presentation-component>
 <presentation-component name="Visible_Face" >
 <data file-name="visible-face-video/05288v3.ts" file-format="MPEG2-TS" />
 </presentation-component>
 </complex-presentation>
 </complex-biometric-signature>
 <complex-biometric-signature name="nd1S05156" >
 <complex-presentation name="nd1S05156" modality="Face" >
 <presentation-component name="NIR_Face" >
 <data file-name="NIR-face-video/05156v333.avi" file-format="avi" />
 </presentation-component>
 <presentation-component name="Visible_Face" >
 <data file-name="visible-face-video/05156v331.ts" file-format="MPEG2-TS" />
 </presentation-component>
 </complex-presentation>
 </complex-biometric-signature>
</biometric-signature-set>

 12

Writing
Like most XML documents, signature sets are easier to write than they are to parse. Thus, users

can either use the C++ and Java classes supplied in BEE (distribution

mbgc/apps/btools/c++/sigset/ and the mbgc/apps/btools/java/sigset/) to create signature sets or

output them directly. We recommend that the supplied classes be used because they have been

rigorously tested and can easily be made compliant with changes in the schemas for signature

sets.

Similarity Matrices
Overview
Similarity matrices are the primary output structures of recognition algorithms in MBGC. They

consist of a header that specifies the type and dimension of the contained data and the n×m

scores from the biometric algorithm.

Structure
The similarity matrix is similar to many image files in that it contains a textual header prepended

to a binary representation of an n×m data structure. The structure of the header is depicted in

Figure E. Here, we see that the header consists of four lines. The first line must contain either the

character ‘D’ (for distance matrix) or the character ‘S’ (similarity matrix) followed by the

character ‘2’. The second and third lines should contain the name of the target and query

signature sets respectively. The target and query name should be the same as they were specified

in the call to the matching executable. The fourth line should contain the characters ‘MF’, a

space, the number of signatures in the query sigset, a space, the number of signatures in the

target sigset, a space, and the integer 0x12345678 written in binary format. All four lines in the

header should be terminated by an end-of-line character. Table C describes the elements in the

similarity matrix header.

Figure E Example of the similarity matrix header.

D2
sigsets/still_LG2200_leftLsession1.xml
sigsets/NIR_portal_samples_session1and2.xml
MF 139 70 xV4

 13

Name Format Separator Comments
Storage Type Character ‘S’ or ‘D’ none Specified similarity scores, ‘S’, or distance

measures ‘D’.
Version The character ‘2’ eol The value ‘2’ corresponds to the version of

similarity matrix.
Target name string eol This string should be the same as the name

of the target sigset provided to the
matching algorithm.

Query name string eol This string should be the same as the name
of the query sigset provided to the
matching algorithm.

Format The characters ‘MF’ space The values correspond to a matrix, ‘M’,
containing float, ‘F’, values.

Rows integer space The number of signatures in the query set.
Cols integer space The number of signatures in the target set.
Magic number 0x12345678

(4-bytes binary)
eol This binary value is used to check for

Endian (byte swapping).
Table C Description of elements in the similarity matrix header.

The scores are written to the file immediately following the header. These should be n×m 4-byte

binary floating point values. Here, n is the number of signatures in the query set and m is the

number of signatures in the target set. Thus, the first m values correspond to comparing the first

query image to each of the target images. There must not be any white space characters

separating scores in the body of the similarity matrix.

Parsing
Source code for C++ and Java classes for parsing similarity matrices are provided in the BEE

(Biometric Experimentation Environment) Tools distribution mbgc/apps/btools/c++/matrix/ and

the mbgc/apps/btools/java/matrix/. Parsers will not be made available for other languages (e.g.

Matlab). However, users should be able to easily create parsers in other languages using the C++

classes as guides.

Writing
Source code for C++ and Java classes for writing similarity matrices are provided in the BEE

(Biometric Experimentation Environment) Tools distribution mbgc/apps/btools/c++/matrix/ and

the mbgc/apps/btools/java/matrix/. Writers will not be made available for other languages (e.g.

Matlab). However, users should be able to easily write similarity matrices in other languages

using the C++ classes as guides.

 14

Mask Matrices
Overview
Mask matrices along with similarity matrices are an input to the analysis code that computes the

performance of recognition algorithms in MBGC. Mask matrices provide the ground truth

(answer key) for each MBGC experiment.

Structure
The mask matrix structure is generally the same as the similarity matrix structure in that it

consists of a header that specifies the type and dimension of the contained data and the n×m

scores from the biometric algorithm. The only difference is that mask matrices contain n×m byte

(unsigned char) values while similarity matrices have float values. The structure of the mask

matrix header is depicted below in Figure F. Here, we see that the header consists of four lines.

The first line must contain the character ‘M’ (for mask matrix) followed by the character ‘2’. The

second and third lines contain the name of the target and query signature sets respectively. The

fourth line should contain the characters ‘MB’, a space, the number of signatures in the query

sigset, a space, the number of signatures in the target sigset, a space and the integer 0x12345678

written in binary format. All four lines in the header should be terminated by an end-of-line

character. Table C describes the elements in the mask matrix header.

Figure F Example of the mask matrix header.

M2
sigsets/still_LG2200_left_session1.xml
sigsets/NIR_portal_samples_session1and2.xml
MB 139 70 1425 xV4

 15

Name Format Separator Comments
Storage Type Character ‘M’ none Specified mask matrix values.
Version The character ‘2’ eol The value ‘2’ corresponds to the version of

similarity matrix.
Target name string eol The name of the target sigset associated

with the experiment.
Query name string eol The name of the query sigset associated

with the experiment.
Format The characters ‘MB’ space The values correspond to a matrix, ‘M’,

containing byte, ‘B’, values.
Rows integer space The number of signatures in the query set.
Cols integer space The number of signatures in the target set.
Magic number 0x12345678

(4-bytes binary)
eol This binary value is used to check for

Endian (byte swapping).
Table D Description of elements in the mask matrix header.

The header is prepended to a binary representation of an n×m data structure. The ground truth

values are written to the file immediately following the header. These should be n×m 1-byte

values. Here, n is the number of signatures in the query set and m is the number of signatures in

the target set. Thus, the first m values correspond to comparing the first query image to each of

the target images. There must not be any white space characters separating scores in the body of

the mask matrix. The hex values in the matrix correspond to matches (0xff), non-matches (0x7f),

and don’t care values (0x00). Don’t care values are ignored during accuracy scoring of similarity

matrices.

Parsing
Source code for C++ and Java classes for parsing mask matrices are provided in the BEE

(Biometric Experimentation Environment) Tools distribution in the

mbgc/apps/btools/c++/matrix/ and the mbgc/apps/btools/java/matrix/ directories. Parsers will

not be made available for other languages (e.g. Matlab). However, users should be able to easily

create parsers in other languages using the C++ classes as guides.

Writing
Source code for C++ and Java classes for writing mask matrices are provided in the BEE

(Biometric Experimentation Environment) Tools distribution in the distribution

mbgc/apps/btools/c++/matrix/ and the mbgc/apps/btools/java/matrix/ directories. Writers will

 16

not be made available for other languages (e.g. Matlab). However, users should be able to easily

write mask matrices in other languages using the C++ classes as guides.

Log Files
Each executable should produce a log file. The name (and directory) for the log file will be

provided in the parameter file via the name attribute of the LogFile element. The log file should

provide detailed information to help troubleshoot algorithms.

 17

Experiment Target(s) Query(s) Mask Matrix(s)
Target
Size

Query
Size

StillFace_versus_HDVideoFace still_medium_res_session1.xml
still_medium_res_session2.xml

visible_video_portal_session1and2.xml
visible_video_portal_session1and2.xml

smrs1_vvps12_mask.mtx
smrs2_vvps12_mask.mtx

139
139

70
69

VideoIris_versus_NIR

video_LG2200_left_session1.xml
video_LG2200_left_session2.xml
video_LG2200_right_session1.xml
video_LG2200_right_session2.xm

NIR_portal_samples_session1and2.xml
NIR_portal_samples_session1and2.xml
NIR_portal_samples_session1and2.xml
NIR_portal_samples_session1and2.xml

vlls1_npss12_mask.mtx
vlls2_npss12_mask.mtx
vlrs1_npss12_mask.mtx
vlrs2_npss12_mask.mtx

139
139
139
139

70
69
70
69

StillIris_versus_NIR

still_LG2200_left_session1.xml
still_LG2200_left_session2.xml
still_LG2200_right_session1.xml
still_LG2200_right_session2.xml

NIR_portal_samples_session1and2.xml
NIR_portal_samples_session1and2.xml
NIR_portal_samples_session1and2.xml
NIR_portal_samples_session1and2.xml

slls1_npss12_mask.mtx
slls2_npss12_mask.mtx
slrs1_npss12_mask.mtx
slrs2_npss12_mask.mtx

139
139
139
139

70
69
70
69

MultipleBiometrics
StillFace + VideoIirs

versus
HDVideoFace + NIR

still_medium_res_video_LG2200_left_session1.xml
still_medium_res_video_LG2200_left_session2.xml
still_medium_res_video_LG2200_right_session1.xml
still_medium_res_video_LG2200_right_session2.xml

visible_video_NIR_portal_session1and2.xml
visible_video_NIR_portal_session1and2.xml
visible_video_NIR_portal_session1and2.xml
visible_video_NIR_portal_session1and2.xml

smrvlls1_vvnps12_mask.mtx
smrvlls2_vvnps12_mask.mtx
smrvlrs1_vvnps12_mask.mtx
smrvlrs2_vvnps12_mask.mtx

139
139
139
139

70
69
70
69

MultipleBiometrics
StillFace + StillIirs

versus
HDVideoFace + NIR

still_medium_res_still_LG2200_left_session1.xml
still_medium_res_still_LG2200_left_session2.xml
still_medium_res_still_LG2200_right_session1.xm
still_medium_res_still_LG2200_right_session2.xml

visible_video_NIR_portal_session1and2.xml
visible_video_NIR_portal_session1and2.xml
visible_video_NIR_portal_session1and2.xml
visible_video_NIR_portal_session1and2.xml

smrslls1_vvnps12_mask.mtx
smrslls2_vvnps12_mask.mtx
smrslrs1_vvnps12_mask.mtx
smrslrs2_vvnps12_mask.mtx

139
139
139
139

70
69
70
69

Table E MBGC experiments and data files

 18

Notes

Unix users:

 use dos2unix * on all files in the mbgc/(challengeproblem}/sigsets/ and the
mbgc/(challengeproblem}/param/ directories.

 use chmod a+r * on all files in the mbgc/(challengeproblem}/sigsets/, the
mbgc/(challengeproblem}/maskmatrixes/, and the mbgc/(challengeproblem}/param/
directories to that they can be read.

 use chmod a+x * on all files in the mbgc/bin/ and the mbgc/(challengeproblem}/bin/
directories so that they can be executed.

 use chmod a+w * on the mbgc/(challengeproblem}/output/ directory so that it is
available for output.

 read mbgc/doc/MBGC_file_overview.pdf
 Set the value of the variable DATA_DIR in all of the Bash scripts (*.sh) the

mbgc/(challengeproblem}/bin/ directory. The DATA_DIR variable’s value should be the
path to your top level MBGC data directory. For example, the DATA_DIR variable for
the Portal Challenge should be the path to the directory containing the NIR-face-video/,
NIR-iris-video/, NIR-iris-stills/, visible-face-still/, and visible-face-video/ directories. It
should be the path to the directory containing the Target/ and Query/ directories for the
Still Challenge.

Windows users:

 read mbgc\doc\MBGC_file_overview.pdf
 Set the value of the variable DATA_DIR in all of the Bash scripts (*.bat) the

mbgc\(challengeproblem}\bin\ directory. The DATA_DIR variable’s value should be the
path to your top level MBGC data directory. For example, the DATA_DIR variable for
the Portal Challenge should be the path to the directory containing the NIR-face-video,
NIR-iris-video, NIR-iris-stills, visible-face-still, and visible-face-video directories. It
should be the path to the directory containing the Target and Query directories for the
Still Challenge.

